Skip to main content
Log in

Superplastic deformation and microstructure evolution in PM IN-100 superalloy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The superplastic deformation behaviour of PM IN-100 alloys consolidated by hot isostatic pressing (HIP) was investigated in compression tests at temperatures between 1323 and 1373K. The microstructural changes were observed using scanning electron microscopy. In the high strain rate region, grain refinement occurs due to dynamic recrystallization, resulting in the work softening type stress-strain curves. At low strain rates, grain growth occurs during deformation corresponding to work hardening. The strain rate sensitivity index,m, reaches a maximum value (m = 0.6) at the optimum strain rate which depends on the test temperature. The grain size dependence coefficient,p, was determined to be 2.0. The activation energy for deformation was 348kJ mol−1. The rate-controlling mechanism of superplasticity in as HI Ped IN-100 seems to be the grain-boundary sliding controlled by volume diffusion rather than grain-boundary diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Menzies, J. W. Edington andG. J. Davies,Metal Sci. 15 (1981) 210.

    Google Scholar 

  2. R. G. Menzies, G. J. Davies andJ. W. Edington,ibid. 16 (1982) 483.

    Google Scholar 

  3. Idem ibid.,16 (1982) 356.

    Google Scholar 

  4. J.-P. A. Immarigeon andP. H. Floyd,Met. Trans. 12A (1981) 1177.

    Google Scholar 

  5. S. H. Reichman andJ. W. Smythe,Int. J. Powder Met. 6 (1970) 65.

    Google Scholar 

  6. P. K. Padmanabhan andG. J. Davies, in “Superplasticity” (Springer Verlag, Berlin 1980).

    Google Scholar 

  7. T. G. Langdon,Metals Forum 4 (1981) 14.

    Google Scholar 

  8. J. W. Edington,ibid. 4 (1981) 63.

    Google Scholar 

  9. M. F. Ashby andR. A. Verrall,Acta. Metall. 21 (1973) 149.

    Google Scholar 

  10. A. Ball andM. M. Hutchison,Met. Sci. J. 3 (1969) 1.

    Google Scholar 

  11. R. C. Gifkins,Met. Trans. 7A (1976) 1225.

    Google Scholar 

  12. A. Arieli andA. K. Mukherjee,ibid. 13A (1982) 717.

    Google Scholar 

  13. L. M. Moskowitz, R. M. Pelloux andN. J. Grant, in “Proceedings of the Second International Conference on Superalloy Processing” (Metals and Ceramics Information Centre, Columbus, Ohio 1972).

    Google Scholar 

  14. Y. Kobayashi, MS thesis, Massachusetts Institute of Technology (1974).

  15. Y. Torisaka, Y. Nakazawa andM. Miyagagawa,Tetsu to Hagane 72 (1986) 1567 (in Japanese).

    Google Scholar 

  16. H. Barker,Phys. Status Solidi 28 (1968) 569.

    Google Scholar 

  17. M. Badia andA. Vignes,Acta Metall. 17 (1969) 177.

    Google Scholar 

  18. A. R. Paul, M. C. Murty andS. W. Zehr,J. Nucl. Mater. 58 (1975) 205.

    Google Scholar 

  19. J. Ruzickova andB. Million,Mater. Sci. Engng 50 (1981) 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, S., Ando, S., Futami, S. et al. Superplastic deformation and microstructure evolution in PM IN-100 superalloy. J Mater Sci 25, 4712–4716 (1990). https://doi.org/10.1007/BF01129930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129930

Keywords

Navigation