Skip to main content
Log in

Factors affecting particle-coarsening kinetics and size distribution

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Lifshitz-Slyozov-Wagner (LSW) theory was developed to model kinetics of precipitate growth from supersaturated solid solutions. The theory corresponds to a zero volume fraction approximation but has been modified for finite volume fractions in order to correspond to real situations. The LSW theory has been applied to study coarsening of grains in liquid-phase sintering and to the coarsening of pores in solid-state sintering systems. There are some additional factors not considered in the LSW theory which can influence the coarsening kinetics depending on the system. It is important, therefore, to incorporate these factors into a coarsening model for better analysis of experimental data. The experimental evidence for the effects of these additional factors is reviewed together with the theoretical modifications made to the basic LSW theory in order to incorporate these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

r :

Radius of the particle

r c :

Critical particle radius

Cy :

Solute concentration in equilibrium with a particle of radiusr

C e :

Solute concentration in equilibrium with a particle of infinite radius

σ:

Particle/matrix interfacial energy

α, γ:

Constant

V m :

Molar volume of the precipitate

\(\bar r\) :

Mean radius of the particle at timet

\(\bar r\) 0 :

Mean radius of the particle at the onset of coarsening

Q :

Volume fraction of the precipitate

k T2 :

Sink factor

D eff :

Effective diffusion coefficient

D gb :

Diffusion coefficient along the grain boundary

D d :

Diffusion coefficient along the dislocation

Z :

Number of dislocation lines crossing the surface

q :

Dislocation pipe cross-section

l :

Average length of the dislocation

E 1 :

Elastic strain energy due to lattice mismatch between precipitate and matrix

E 3 :

Elastic interaction energy due to overlapping of strain fields

μ:

Shear modulus of the matrix

μ′:

Shear modulus of the precipitate

τg :

Time between contacts due to gravity

τbr :

Time between contacts due to Brownian motion

τf :

Time required to fuse two particles

τor :

Time required to remove a particle by Ostwald ripening

U A :

Driving force correction factor

X Bos :

Solubility of componentB in the solid phase

k LSW :

LSW rate constant

J rε :

Flux of the ith component for the sth phase

D 1 :

Diffusion coefficient of the ith component

\(\bar c\) :

Average concentration of ith component in the matrix

c rε :

Equilibrium concentration of theith component at the sth phase particle/matrix interface

σ:

Equal tor/\(\bar r\)

References

  1. G. W. Greenwood,Acta Metall. 4 (1956) 243.

    Google Scholar 

  2. I. M. Lifshitz andV. V. Slyozov,Phys. Client. Solids 11 (1961) 35.

    Google Scholar 

  3. Fizika Ivergoda. Tela. 1 (1959) 1401.

    Google Scholar 

  4. C. Wagner,Z. Electrochem. 65 (1961) 581.

    Google Scholar 

  5. S. S. Kang andD. N. Yoon,Met. Trans. 13A (1982) 1405.

    Google Scholar 

  6. ,12A (1981) 65.

    Google Scholar 

  7. Y. Seng, Y. Tomokiyo, K. Oki andT. Eguchi,Trans. Jpn Inst. Metals 24 (1983) 491.

    Google Scholar 

  8. T. Eguchi, Y. Tomokiyo, K. Oki andY. Seng,Mat. Res. Soc. Symp. Proc. 21 (1984) 475.

    Google Scholar 

  9. R. Watanabe andY. Masuda,Modern Devel. Powder Metall. 6 (1974) 1.

    Google Scholar 

  10. R. Watanabe, K. Tada andY. Masuda,Z. Metallkde 13 (1976) 619.

    Google Scholar 

  11. C. K. L. Davies, P. Nash andR. N. Stevens,Acta Metall. 28 (1980) 179.

    Google Scholar 

  12. A. J. Ardell,Acta Metall. 20 (1972) 61.

    Google Scholar 

  13. K. Tsumuraya andY. Miyata,31 (1983) 437.

    Google Scholar 

  14. R. N. Stevens, personal communication (1978).

  15. P. Nash,Scripta Metall. 18 (1984) 295.

    Google Scholar 

  16. R. Asimov,Acta Metall. 11 (1963) 71.

    Google Scholar 

  17. A. D. Brailsford andP. Wynblatt,Acta Metall. 27 (1979) 489.

    Google Scholar 

  18. P. W. Voorhees andM. E. Glicksmann,ibid. 32 (1984) 2001.

    Google Scholar 

  19. ,ibid. 32 (1984) 2013.

    Google Scholar 

  20. J. A. Marqusee andJ. Ross,J. Chem. Phys. 80 (1984) 536.

    Google Scholar 

  21. M. Tokuyama andM. Kawasaki,J Physica 123A (1984) 386.

    Google Scholar 

  22. P. W. Voorhees,J. Stat. Phys. 38 (1985) 231.

    Google Scholar 

  23. C. K. L. Davies, P. Nash andR. N. Stevens,J. Mater. Sci. 15 (1980) 1521.

    Google Scholar 

  24. A. J. Ardell andR. B. Nicholson,J. Phys. Chem. Solids 27 (1966) 1793.

    Google Scholar 

  25. D. J. Chellman andA. J. Ardell,Acta Metall. 22 (1974) 577.

    Google Scholar 

  26. D. W. Chung andM. Chaturvedi,Metallogr. 8 (1975) 329.

    Google Scholar 

  27. P. Nash, PhD thesis, The University of London, Queen Mary College, London (1977).

  28. M. Chaturvedi andD. W. Chung,J. Inst. Metals 101 (1973) 253.

    Google Scholar 

  29. H. Gleiter andE. Hornbogen,Z. Metallkde 58 (1967) 157.

    Google Scholar 

  30. A. J. Ardell,Met. Trans. 1 (1970) 525.

    Google Scholar 

  31. T. B. Gibbons andB. E. Hopkins.Met. Sci. J. 5 (1971) 233.

    Google Scholar 

  32. V. Biss andD. L. Sponseller,Met. Trans. 58 (1973) 1953.

    Google Scholar 

  33. YU. G. Sorokina andS. A. Yuganova,Metall. Term. Obra. Metallov. 6 (1968) 46.

    Google Scholar 

  34. R. D. Doherty,Metal Sci. 16 (1982) 1.

    Google Scholar 

  35. P. K. Rastogi andA. J. Ardell,Acta Metall. 19 (1971) 321.

    Google Scholar 

  36. B. P. Gu, G. L. Liedl, J. H. Kulwicki andT. H. Sanders Jr,Mater. Sci. Engng 70 (1985) 217.

    Google Scholar 

  37. B. P. Gu, G. L. Liedl, K. Mahalingam andT. H. Sanders Jr,78 (1986) 71.

    Google Scholar 

  38. K. Mahalingam, B. P. Gu, G. L. Liedl andT. H. Sanders Jr. Acta Metall. 35 (1987) 483.

    Google Scholar 

  39. F. A. Flinn,Trans. AIME 218 (1960) 145.

    Google Scholar 

  40. A. J. Ardell,Acta Metall. 20 (1971) 601.

    Google Scholar 

  41. H. O. K. Kirchner,Met. Trans. 2 (1971) 2861.

    Google Scholar 

  42. R. D. Vengrenovitch,Acta Metall. 30 (1982) 1079.

    Google Scholar 

  43. V. V. Slyozov, V. V. Sagalovich andL. V. Tanatrov,J. Phys. Cheat. Solids 39 (1978) 705

    Google Scholar 

  44. M. V. Speight,Acta Metall. 16 (1968) 133.

    Google Scholar 

  45. R. D. Vengrenovitch,Fiz. Metal. Metalloved. 39 (1975) 436.

    Google Scholar 

  46. G. W. Greenwood, “The Mechanism of Phase Transformation in Crystalline Solids”, Manchester, Institute of Metals Monograph, No. 33 (1968).

  47. H. Kreye,Z. Metallkde 61 (1970) 108.

    Google Scholar 

  48. J. D. Hosson,Beitr. Elektro. Direktabb. Oberft. 16 (1983) 169.

    Google Scholar 

  49. A. J. Ardell, R. B. Nicholson andJ. D. Esh-elby,Acta Metall. 14 (1966) 1295.

    Google Scholar 

  50. H. Clarendon andM. E. Fine,Mater. Sci. Engng 63 (1984) 197.

    Google Scholar 

  51. S. I. Kwun andM. E. Fine,Met. Trans. 16A (1985) 709.

    Google Scholar 

  52. A. F. Smith,Acta Metall. 15 (1967) 1867.

    Google Scholar 

  53. ,J. Less-Common Metals 9 (1965) 233.

    Google Scholar 

  54. P. F. James andF. H. Fern.J. Nucl. Mater. 29 (1969) 203.

    Google Scholar 

  55. T. Miyazaki, H. Imamura andT. Kozaki,Mater. Sci. Engng 54 (1982) 9.

    Google Scholar 

  56. R. A. Mackay andL. J. Ebert,Met. Trans. 16A (1985) 1969.

    Google Scholar 

  57. J. D. Eshelby,Proc. Roy. Soc. A241 (1957) 376.

    Google Scholar 

  58. H. Yamauchi andD. de Fontaine,Acta Metall. 27 (1979) 763.

    Google Scholar 

  59. W. C. Johnson andJ. K. Lee,Met. Trans. l0A (1979) 1141.

    Google Scholar 

  60. E. H. Yoffe,Phil. Mag. 30 (1974) 923.

    Google Scholar 

  61. A. G. Khachaturyan,Sov. Phys. Sol. State 8 (1967) 2163.

    Google Scholar 

  62. E. Seitz andD. de Fontaine,Acta Metall. 26 (1978) 1671.

    Google Scholar 

  63. T. Miyazaki,H. Imamura,H. MoriandT. Kozaki,J. Mater. Sci. 16 (1981) 1197.

    Google Scholar 

  64. M. Doi, T. Miyazaki andT. Wakatsuki,Mater. Sci. Engng 67 (1984) 247.

    Google Scholar 

  65. ,74 (1985) 139.

    Google Scholar 

  66. M. Doi andT. Wakatsuki,78 (1986) 87.

    Google Scholar 

  67. A. G. Khachaturyan, S. V. Semenovskaya andJ. W. Morris Jr.Acta Metall. (1986).

  68. P. W. Voorhees, abstract 116th TMS Annual Meeting, Denver, Colorado, 23–26 February (1987).

  69. P. K. Rastogi andA. J. Ardell,Acta Metall. 17 (1969) 595.

    Google Scholar 

  70. R. J. White andS. B. Fisher,Mater. Sci. Engng 33 (1978) 149.

    Google Scholar 

  71. R. J. White, 40 (1979) 15.

    Google Scholar 

  72. D. McLean,Met. Sci. 18 (1984) 249.

    Google Scholar 

  73. J. I. Bramman, A. S. Fraser andW. H. Martin,J. Nucl. Energy 25 (1971) 223.

    Google Scholar 

  74. R. N. Stevens, personal communication (1981).

  75. T. H. Courtney,Met. Trans. 8A (1977) 671.

    Google Scholar 

  76. Idem, ibid. 8A (1977) 679.

    Google Scholar 

  77. Idem, ibid. 8A (1977) 685.

    Google Scholar 

  78. A. N. Niemi, L. E. Baxa, J. K. Lee andT. H. Courtney,Modern Devel. Powder Metall. 12 (1980) 483.

    Google Scholar 

  79. P. W. Voorhees andM. E. Glicksman,Met. Trans. 15A (1984) 1081.

    Google Scholar 

  80. U. Lindborg andK. Toresell.Trans. AIMS 242 (1986) 94.

    Google Scholar 

  81. L. Ratke andW. K. Theiringer,Acta Metall. 33 (1985) 1793.

    Google Scholar 

  82. W. K. Theiringer andL. Ratke,ibid. 35 (1987) 1237.

    Google Scholar 

  83. C. Y. Ang andL. L. Lacy ASTP Experiment MA-044, NASA TM X-64956, Marshall Space Flight Center, Alabama (1975).

    Google Scholar 

  84. H. Ahlborn andK. Leohberg, Proceedings Status Seminar Uber Spacelab-Nutzung, Bad Kissingen, European Space Agency, Hamburg FRG 12 (1976).

    Google Scholar 

  85. T. Carlberg andH. Fredricksson, Proceedings of the 3rd European Symposium on Material Sciences in Space, edited by T. D. Guyenne and S. Adany, European Space Agency, Paris, Grenoble (1979) p. 233.

    Google Scholar 

  86. A. Kneissl, P. Pffefferkon andH. Fischmeister, Proceedings of the 4th European Symposium on Material Sciences under Microgravity, Madrid (1983) p. 55.

  87. J. M. Chaix, N. Eustathopoulos andC. H. Allibert,Acta Metall. 34 (1986) 1589.

    Google Scholar 

  88. Idem, ibid. 34 (1986) 1593.

    Google Scholar 

  89. S. C. Yang andP. Nash.J. Mater. Sci. Tech. 4 (1988) 860.

    Google Scholar 

  90. V. V. Slyozov andV. V. Sagalovich.J. Phys. Chem. Solids 38 (1977) 943.

    Google Scholar 

  91. C. S. Jayanth. PhD thesis. Illinois Institute of Technology, Chicago, Illinois, USA (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayanth, C.S., Nash, P. Factors affecting particle-coarsening kinetics and size distribution. J Mater Sci 24, 3041–3052 (1989). https://doi.org/10.1007/BF01139016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01139016

Keywords

Navigation