Skip to main content
Log in

Formation of willemite from powder mixture with TiO2 addition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation of willemite, Zn2SiO4, from stoichiometric oxide powder mixtures either with 3.2 mol % TiO2 additive (ZST) or without TiO2 addition (ZS) and from flux-added glaze powder (G) were studied in the temperature range of 650 to 1515° C. Activation energy of willemite formation were 167, 226 and 188 kJ mol−1 for G, ZS and ZST specimens respectively. TiO2 addition not only reduced the activation energy of willemite formation, but was also found to stabilize the metastable phase,β-Zn2SiO4, to room temperature after cooling from melts. Annealing of the melted ZnO-SiO2-TiO2 composition resulted in the transformation of β-Zn2SiO4 to α-Zn2SiO4. It is suggested that the substitution of a Si+4-site by a Ti+4 ion contributes to the stabilization of the β-phase, the larger d-spacing, and smaller c/a ratio of willemite transformed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Speer andP. H. Ribbe, in “Reviews in Mineralogy”, Vol. 5, 2nd edn, edited by P. H. Ribbe (Mineralogical Society of America, Washington, D.C., 1982) p. 429.

    Google Scholar 

  2. F. H. Norton,J. Amer. Ceram. Soc. 20 (1937) 217.

    Google Scholar 

  3. Z. Strnad, “Glass Science and Technology”, Vol. 8, (Elsevier, Amsterdam, 1986) p. 101 and literature cited herein.

    Google Scholar 

  4. E. N. Bunting,J. Amer. Ceram. Soc. 13 (1930) 5.

    Google Scholar 

  5. A. E. Ringwood andA. Major,Nature 215 (1967) 1367.

    Google Scholar 

  6. Y. Syono andS. I. Akimoto,J. Solid State Chem. 3 (1971) 369.

    Google Scholar 

  7. A. Schleede andA. Gruhl,Z. Elektrochem. 29 (1923) 411.

    Google Scholar 

  8. J. Williamson andF. P. Glasser,Phys. Chem. Glasses,5 (1964) 52.

    Google Scholar 

  9. H. P. Rooksby andA. H. McKeag,Trans. Faraday Soc. 3 (1941) 308.

    Google Scholar 

  10. H. F. W. Taylor,Amer. Mineral. 47 (1962) 932.

    Google Scholar 

  11. P. W. McMillan, G. Partridge andJ. G. Darrant,Phys. Chem. Glasses,10 (1969) 153.

    Google Scholar 

  12. P. W. McMillan, “Glass Ceramics”, 2nd edn (Academic Press, London, 1979) p. 76.

    Google Scholar 

  13. B. O. Mysen, “Developments in Geochemistry”, Vol. 4, (Elsevier, Amsterdam, 1988) p. 187.

    Google Scholar 

  14. F. H. Dulin andD. E. Rase,J. Amer. Ceram. Soc. 43 (1960) 130.

    Google Scholar 

  15. S. R. Bartram andR. A. Slepetys,ibid. 44 (1961) 493.

    Google Scholar 

  16. Y. Harada andD. W. Gates, in “Ceramic Processing before Firing” edited by G. Y. Onoda, Jr. and L. L. Hench, (Wiley, New York, 1975) p. 449.

    Google Scholar 

  17. W. A. Johnson andR. F. Mehl,Trans. AIME 135 (1939) 416.

    Google Scholar 

  18. M. Avrami,Chem. Phys. 7 (1939) 1103.

    Google Scholar 

  19. Idem., ibid. 8 (1940) 212.

    Google Scholar 

  20. Idem., ibid. 9 (1941) 177.

    Google Scholar 

  21. A. E. Holland andE. R. Segnit,Aust. J. Chem. 19 (1966) 905.

    Google Scholar 

  22. B. K. Vainshtein, V. M. Fridkin andV. L. Indenbom, (eds), “Modern Crystallography, II, Structure of Crystals”, (Springer, Berlin, 1982) p. 77.

    Google Scholar 

  23. S. F. Hulbert,J. Brit. Ceram. Soc. 6 (1969) 11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.C., Shen, P. & Lu, H.Y. Formation of willemite from powder mixture with TiO2 addition. J Mater Sci 24, 3300–3304 (1989). https://doi.org/10.1007/BF01139057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01139057

Keywords

Navigation