Skip to main content
Log in

Hydro-mechanical aspects of the sand production problem

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper examines the hydro-mechanical aspect of the sand production problem and sets the basic frame of the corresponding mathematical modelling. Accordingly, piping and surface erosion effects are studied on the basis of mass balance and particle transport considerations as well as Darcy's law. The results show that surface erosion is accompanied by high changes of porosity and permeability close to the free surface. Quantities which can be measured in experiment, like the amount of produced solids or fluid discharge, can be used in an inverse way to determine the constitutive parameters of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

dV :

Volume element

dV s :

Volume of solids pt

dV v :

Volume of voids

dV ff :

Volume of fluid phase

dV fs :

Volume of fluidized-particles

\(d\mathop V\limits^--\) :

Volume of mixture

dM s :

Mass of solids

dM ff :

Mass of fluid phase

d M fs :

Mass of fluidized-particles

\(d\mathop M\limits^--\) :

Mass of mixture

ϱs:

Density of solids

ϱf:

Density of fluid

ϱff:

Density of fluid phase

ϱfs:

Density of fluidized-particles

\(\bar \rho\) :

Density of mixture

ν ff i :

Velocity of fluid

ν fs i :

Velocity of fluidized-particles

ν s i :

Velocity of solids

\(\bar \upsilon _i\) :

Velocity of mixture

q ff :

Volume-discharge of fluid

q fs :

Volume-discharge of fluidized-particles

\(\bar q_i\) :

Volume-discharge of mixture

m ff :

Mass-discharge of fluid

m fs :

Mass-discharge of fluidized-particles

\(\mathop m\limits^-- _i\) :

Mass-discharge of mixture

\(\dot m\) er :

Rate of mass-eroded

\(\dot m\) dep :

Rate of mass-deposited

\(\dot m\) :

Mass generation term

dS i :

Surface element

\(d\mathop S\limits^-- _i\) :

Pore-surface element

D IJ :

Tensor of mechanical dispersion

x i :

Location

t :

Time

ϕ :

Porosity

c :

Transport concentration

c cr :

Critical value ofc

p :

Fluid-pressure

k :

Permeability coefficient

μ k :

Kinematic viscosity

λ:

Spatial frequency of erosion starter points

References

  1. Veeken, M. G. A., Davies, D. R., Kenter, C. J. and Kooijman, A. P.: 1991, Sand production review: developing an integral approach,SPE 22792, 335–346.

    Google Scholar 

  2. Bratli, R. K. and Risnes, R.: 1981, Stability and failure of sand arches,SPE J., 236–248.

  3. Perkins, T. K. and Weingarten, J. S.: 1988, Stability and failure of spherical cavities in unconsolidated sand and weakly consolidated rock,SPE 18244.

  4. Vaziri, H. J. H.: 1988, Theoretical analysis of stress, pressure and formation damage during production,J. Canad. Pet. Tech. 27, 111–117.

    Google Scholar 

  5. Morita, N., Withfill, D. L., Massie, I. and Knudsen, T. W.: 1989, Realistic sand-production prediction: numerical approach,SPE Prod. Eng., 15–24.

  6. Papanastasiou, P. and Vardoulakis, I.: 1992, Numerical treatment of progressive localisation in relation to borehole stability,Int. J. Numer. Anal. Meth. Geomech. 16, 389–424.

    Google Scholar 

  7. Papanastasiou, P. and Vardoulakis, I.: 1994, Numerical analysis of borehole stability problem, in J.W. Bull (ed.),Soil-Structure Interaction: Numerical Analysis and Modelling, E. & F. N. Spon, London, pp.673–711.

    Google Scholar 

  8. Vardoulakis, I. and Sulem, J.: 1995,Bifurcation Analysis in Geomechanics, Blackie Academic and Professional, London.

    Google Scholar 

  9. Tronvoll, J. and Fjaer, F.: 1994, Experimental study of sand production from perforation cavities,Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 31(5), 393–410.

    Google Scholar 

  10. Einstein, H. A.: 1937, tDer Geschiebetrieb als wahrscheinlichkeits Problem,Mitt. d. Versuchsanstalt f. Wasserbau, Eidg. T. H., Zurich.

    Google Scholar 

  11. Sakthivadivel, R. and Irmay, S.: 1966, A review of filtration theories,HEL 15-4, University of California, Berkeley.

    Google Scholar 

  12. Sakthivadivel, R.: 1966, Theory and mechanism of filtration of non-colloidal fines through a porous medium,HEL 15-5,6,7, University of California, Berkeley.

    Google Scholar 

  13. Bear, J.: 1972,Dynamics of Fluids in Porous Media, Dover, New York.

    Google Scholar 

  14. Irmay, S.: 1958, On the theoretical derivation of Darcy and Forchheimer formulas,Trans. Am. Geophys. Union 39, 702–707.

    Google Scholar 

  15. Barnes, H. A., Hutton, J. F. and Walters, K.: 1989,An Introduction to Rheology, Elsevier, London.

    Google Scholar 

  16. Skempton, A. W. and Brogan, J. M.: 1994, Experiments on piping in sandy gravels,Geotechnique 44(3), 449–460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardoulakis, I., Stavropoulou, M. & Papanastasiou, P. Hydro-mechanical aspects of the sand production problem. Transp Porous Med 22, 225–244 (1996). https://doi.org/10.1007/BF01143517

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01143517

Key words

Navigation