Skip to main content
Log in

Influence of heat treatment on the tensile properties and fracture behaviour of an aluminium alloy-ceramic particle composite

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile deformation and fracture behaviour of aluminium alloy 2124 reinforced with different amounts of silicon carbide particulates was studied, in the as-extruded and heat-treated conditions, with the objective of investigating the influence of heat treatment and composite microstructural effects on tensile properties and quasi-static fracture behaviour. Results indicate that for a given microstructural condition, the elastic modulus and strength of the metal-matrix composite increased with reinforcement content in the metal matrix. For a given volume fraction of reinforcement, the heat-treated composite exhibited significantly improved modulus and strength-ductility relationships over the as-extruded counterpart. The increased strength of the Al-SiC composite is attributed to the competing and synergistic influence of strengthening precipitates in the matrix metal, residual stresses generated due to intrinsic differences in thermal expansion coefficients between components of the composite and strengthening from constrained plastic flow and triaxiality in the ductile matrix due to the presence of brittle reinforcement. Fracture on a microscopic scale is initiated by cracking of the individual or clusters of SiC particles present in the microstructure. Particle cracking was dominant for the as-extruded composite microstructure. For both the as-extruded and heat-treated conditions, particle cracking increased with reinforcement content in the matrix. Final fracture of the composite resulted from crack propagation through the matrix between clusters. Although these composites exhibited limited ductility on a macroscopic scale, on a microscopic scale the fracture mechanism revealed features reminiscent of ductile failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Mueller, J. L. Prohaska andJ. W. Davis, in “Proceedings of AIAA Aerospace Engineering Conference” (AIAA, Los Angeles, CA, 1985).

    Google Scholar 

  2. C. R. Crowe andD. F. Hasson, in “Strength of Metals and Alloys: Proceedings of the Sixth International Conference”, edited by R. C. Gifkins, ICSMA-6, Melbourne, Australia (Pergamon Press, London, 1982).

    Google Scholar 

  3. T. G. Neih,Metall. Trans. 15A (1984) 139.

    Google Scholar 

  4. D. L. McDanels,ibid. 16A (1985) 1105.

    Google Scholar 

  5. W. A. Logsdon andPeter K. Liaw,Engng Fract. Mech. 24 (1986) 737

    Google Scholar 

  6. D. Mott andPeter K. Liaw,Metall. Trans. 19A (1988) 2233.

    Google Scholar 

  7. D. L. Davidson,ibid. 18A (1987) 2125.

    Google Scholar 

  8. S. Manoharan andJ. J. Lewandowski,Acta Metall. 38 (1990) 489.

    Google Scholar 

  9. D. C. Drucker, in “High Strength Materials”, edited by V. F. Zackey (Wiley Interscience, New York, 1965) pp 21–31.

    Google Scholar 

  10. D. A. Koss andS. M. Copley Metall. Trans. 2A (1971) 1557.

    Google Scholar 

  11. T. W. Butler andD. C. Drucker,J. Appl. Mech. 40 (1973) 780.

    Google Scholar 

  12. A. P. Divecha, C. R. Crowe andS. G. Fishman, “Failure Modes in Composites IV” (Metallurgical Society of AIME, Warrendale, PA, 1977) 406.

    Google Scholar 

  13. A. P. Divecha, S. G. Fishman andS. D. Karmarkar,J. Metals 33 (1981) 12.

    Google Scholar 

  14. R. J. Arsenault andR. M. Fisher,Scripta Metall. 17 (1983) 67.

    Google Scholar 

  15. T. G. Neih andR. F. Karlak,J. Mater. Sci. Lett. 2 (1983) 119.

    Google Scholar 

  16. R. J. Arsenault Mater. Sci. Engng 64 (1984) 171.

    Google Scholar 

  17. T. G. Neih andD. J. Chellman,Scripta Metall. 18 (1984) 925.

    Google Scholar 

  18. V. C. Nardone andK. M. Prewo,ibid. 20 (1986) 43.

    Google Scholar 

  19. R. J. Arsenault andN. Shi,Mater. Sci. Engng 81 (1986) 175.

    Google Scholar 

  20. S. R. Nutt andA. Needleman,Scripta Metall. 21 (1987) 705.

    Google Scholar 

  21. R. J. Arsenault andS. B. Wu,Mater. Sci. Engng 96 (1987) 77.

    Google Scholar 

  22. T. Christman andS. Suresh,Acta Metall. 6 (1988) 1691.

    Google Scholar 

  23. Idem, Mater. Sci. Engng 102A (1988) 221.

    Google Scholar 

  24. H. J. Rack,Adv. Mater. Manufact. Process. 3 (1988) 327.

    Google Scholar 

  25. J. J. Lewandowski, C. Liu andWarren H. Hunt Jr, in “Powder Metallurgy Composites”, edited by P. Kumar, K. Vedula and Ann Ritter (Metallurgical Society of AIME, Warrendale, PA, 1989).

    Google Scholar 

  26. H. J. Rack,idib. in “

    Google Scholar 

  27. T. Christman, A. Needleman, S. R. Nutt andS. Suresh,Mater. Sci. Engng 107A (1989) 49.

    Google Scholar 

  28. J. J. Lewandowski, C. Liu andWarren H. Hunt Jr,ibid. 107A (1989) 2412.

    Google Scholar 

  29. Jian Ku Shang andR. O. Ritchie,Metall. Trans. 20A (1989) 897.

    Google Scholar 

  30. Shinji Kumai, J. E. King andJohn F. Knott,Fat. Fract. Engng Mater. Struct. 13 (1990) 511.

    Google Scholar 

  31. R. J. Arsenault, L. Wang andC. R. Feng,Acta Metall. 39 (1991) 47.

    Google Scholar 

  32. D. L. Davidson,Engng Fract. Mech. 33 (1989) 965.

    Google Scholar 

  33. Idem, Metall. Trans. 22A (1991) 97.

    Google Scholar 

  34. Idem, ibid. 22A (1991) 113.

    Google Scholar 

  35. T. S. Srivatsan, Rahul Auradkar andAmit Prakash Engng Fract. Mech. 40 (1991) 277.

    Google Scholar 

  36. T. S. Srivatsan, Rahul Auradkar, Amit Prakash andE. J. Lavernia Mater. Trans. Jpn Inst. Metals July32 (1991) 473.

    Google Scholar 

  37. T. S. Srivatsan andR. Auradkar,J. Mater. Sci. Lett. 10 (1991) 500.

    Google Scholar 

  38. T. S. Srivatsan, R. Auradkar andAmit Prakash, in “Low Density High Strength Aluminium Alloys”, edited by E. W. Lee (Metallurgical Society of AIME, Warrendale, PA, 1991) pp 385–404.

    Google Scholar 

  39. T. S. Srivatsan, I. A. Ibrahim, E. J. Lavernia andF. A. Mohamed,J. Mater. Sci. 26 (1991) 5965.

    Google Scholar 

  40. S. V. Nair, J. K. Tien andR. C. Bates,Int. Metals Rev. 30 (1985) 275.

    Google Scholar 

  41. C. Milliere andM. Suery,Mater. Sci. Technol. 4 (1988) 41.

    Google Scholar 

  42. D. F. Hasson, C. R. Crowe, J. S. Ahearn andD. C. Cooke, Failure Mechanisms in High Performance Materials (Cambridge University Press, Cambridge, 1985) p. 147.

    Google Scholar 

  43. D. L. Davidson,J. Mater. Sci. 24 (1989) 965.

    Google Scholar 

  44. K. Cho andJ. Gurland,Metall Trans. 19A (1988) 2027.

    Google Scholar 

  45. V. C. Nardone,Scripta Metall 21 (1987) 1313.

    Google Scholar 

  46. M. F. Ashby,Philos. Mag. 8 (1970) 399.

    Google Scholar 

  47. K. Tanaka andT. Mori,Acta Metall. 18 (1970) 931.

    Google Scholar 

  48. L. M. Brown andW. M. Stobb,Philos. Mag. 23 (1971) 1185.

    Google Scholar 

  49. W. J. Clegg,Acta Metall. 36 (1988) 2141.

    Google Scholar 

  50. M. Taya, K. E. Lulay andD. J. Lloyd,Acta Metall. 39 (1991) 73.

    Google Scholar 

  51. R. J. Arsenault, L. Wang andC. R. Feng,ibid. 30 (1991) 47.

    Google Scholar 

  52. K. K. Chawla andM. Metzger,J. Mater. Sci. 7 (1972) 34.

    Google Scholar 

  53. M. Vogelsang, R. J. Arsenault andR. M. Fisher,Metall. Trans. 17A (1986) 379.

    Google Scholar 

  54. M. Taya andT. Mori,Acta Metall. 35 (1987) 155.

    Google Scholar 

  55. F. A. McClintock, “Ductility” (American Society for Metals, Metals Park, Cleveland, OH, 1968) p. 256.

    Google Scholar 

  56. R. H. Van Stone, T. B. Cox, J. R. Low Jr, andJ. A. Psioda:Int. Metals Rev. 30 (1985) 157.

    Google Scholar 

  57. A. S. Argon, J. Im andR. Safoglu,Metall. Trans. 6A (1975) 825.

    Google Scholar 

  58. J. Orr andD. K. Brown,Engng Fract. Mech. 6 (1974) 261.

    Google Scholar 

  59. R. D. Thompson andJ. W. Hancock,Int. J. Fract. Mech. 24 (1984) 209.

    Google Scholar 

  60. G. Le Roy, J. D. Embury, G. Edwards andM. F. Ashby,Acta Metall. 29 (1981) 1509.

    Google Scholar 

  61. T. S. Srivatsan, D. Lanning Jr andK. Soni,J. Mater. Sci. in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivatsan, T.S., Mattingly, J. Influence of heat treatment on the tensile properties and fracture behaviour of an aluminium alloy-ceramic particle composite. J Mater Sci 28, 611–620 (1993). https://doi.org/10.1007/BF01151235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151235

Keywords

Navigation