Skip to main content
Log in

The shoshonite porphyry Cu-Au association in the Goonumbla District, N.S.W., Australia

Die Shoshonit Porphyry Cu-Au Assoziation im Goonumbla Distrikt, N.S.W., Australien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The Goonumbla porphyry copper-gold deposit in N.S.W., Australia, is hosted by late Ordovician (439.2 ± 1.2 Ma)shoshonitic igneous rocks. In terms of their petrography, the rocks vary from andesitic to dacitic lavas and tuffs which are partly intruded by monzonite stocks; they are characterized by high and variable Al2O3 (13.4–19.9 wt%), very high K2O values (up to 6.8 wt%), and high K2O/Na2O ratios (0.58–1.48), which are typical for the shoshonite association. The rocks also have enriched LILE concentrations (Ba up to 1200 ppm, Sr up to 1350 ppm), low HFSE (TiO2 < 0.67 wt%, Zr < 125 ppm, Nb < 10 ppm, Hf < 3.4 ppm), and very low LREE (La < 22.4 ppm, Ce < 31 ppm), which are typical for potassic volcanic rocks formed in alate oceanic-arc setting.

Mineral chemistry of selected magmatic mica and apatite phenocrysts from host rocks reveals relatively high SrO and BaO contents (micas: ∼ 0.15 wt% and up to 0.28 wt%, respectively; apatites: up to 0.28 wt% and 0.19 wt%, respectively) and very high halogen concentrations. Micas are characterized by up to 3.9 wt% F and 0.14 wt% Cl, whereas apatites have up to 3.6 wt% F and 0.68 wt% Cl. These very high halogen contents compared to those from barren intrusions imply that the shoshonitic magmatism was the source of mineralization.

Copper-gold mineralization consists mainly of bornite, chalcopyrite, chalcocite and minor pyrite and tetrahedrite. Native gold occurs mainly as minute grains within silicates of the host rocks, and more rarely as fine inclusions in the sulphides. Mineralization is accompanied by wallrock alteration comprising a spatially restricted potassic type and a regional propylitic alteration type.

Thus, the porphyry copper-gold deposit in the Goonumbla district can be viewed as an additional example of a worldwide association between potassic/shoshonitic magmatism and base- and precious-metal mineralization. More specifically, it appears to be the oldest recorded example of a shoshontie-associated porphyry Cu-Au deposit from a late oceanic-arc setting, a possible modern analogue being Ladolam at Lihir Island, Papua New Guinea

Zusammenfassung

Die Porphyry Cu-Au Vererzung im Goonumbla Distrikt in New South Wales, Australien, sitzt in oberordovizischen (ca. 439.2 ± 1.2 Ma) Shoshoniten auf. Das petrographische Spektrum dieser Gesteine reicht von andesitischen bis dazitischen Laven und Tuffen, die lokal von Monzonit-Stöcken intrudiert werden; die Gesteine besitzen hohe, aber variable Al2O3 Gehalte (13.4–19.9 Gew%), sehr hohe K2O Gehalte (bis zu 6.8 Gew%) und hohe K2O/Na2O Verhältnisse (0.58–1.48), die typisch sind für Shoshonite. Außerdem weisen sie hohe Konzentrationen an LILE Elementen (Ba bis 1200 ppm, Sr bis 1350 ppm) auf und geringe Konzentrationen an HFSE (TiO2 < 0.67 Gew%, Zr < 125 ppm, Nb < 10 ppm, Hf < 3.4 ppm) sowie an LREE (La < 22.4 ppm, Ce < 31 ppm), die als typisch gelten für potassische Vulkanite von ozeanischen Plattengrenzen.

Die Mineralchemie von repräsentativen Glimmer- und Apatit-Phänokristallen ist charakterisiert durch hohe SrO und BaO Gehalte (Glimmer: ∼0.15 Gew%, bzw. bis 0.28 Gew%; Apatite: bis 0.28 Gew%, bzw. 0.19 Gew%). Sie enthalten ferner sehr hohe Halogen-Konzentrationen. Die Glimmer enthalten beispielsweise bis zu 3.9 Gew% F und 0.14 Gew% Cl, während Apatite bis zu 3.6 Gew% F und 0.68 Gew% Ci aufweisen. Dies erscheint nicht ungewöhnlich, weil Glimmer und Apatite von vererzten Mag matiten zumeist deutlich höhere Halogengehalte besitzen, als solche von unvererzten Magmatiten. Die hohen Halogen-Gehalte in Phänokristallen aus den Shoshoniten legen nahe, die Vulkanite als den Ursprung der Vererzung zu interpretieren.

Die Cu-Au Vererzung besteht überwiegend aus den Sulfiden Bornit, Kupferkies, Kupferglanz und vereinzelt auftretendem Pyrit und Tetrahedrit. Gediegen Gold wird in der Regel nur als kleine Partikel innerhalb von Silikaten der shoshonitischen Wirtsgesteine und seltener als feine Einschlüsse in Sulfiden gefunden.

Die Vererzung wird von hydrothermaler Alteration der Wirtsgesteine begleitet und zwei Alterationsarten lassen sich unterscheiden: eine potassische sowie eine regional zu beobachtende propylitische Alteration.

Die Porphyry Cu-Au Lagerstätte im Goonumbla Gebiet ist ein Beispiel für die weltweit beobachtete Assoziation von Bunt- und Edelmetallvererzungen und potassisch/shoshonitischem Magmatismus. Der Goonumbla Distrikt stellt die älteste bisher bekannte Porphyry Cu-Au Lagerstätte aus einerspätgenetischen ozeanischen Plattengrenze dar. Einmodernes Beispiel für eine Cu-Au Lagerstätte vergleichbaren Typs ist Ladolam auf Lihir Island, Papua New Guinea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aoki K, Ishiwaka K, Kanisawa S (1981) Fluorine geochemistry of basaltic rocks from continental and oceanic regions and petrogenetic application. Contrib Mineral Petrol 76: 53–59

    Google Scholar 

  • Allan JF, Carmichael LSE (1984) Lamprophyric lavas in the Colima graben, SW Mexico. Contrib Mineral Petrol 88: 203–216

    Google Scholar 

  • Anderson WB, Eaton PC (1990) Gold mineralization at the Emperor mine, Vatukoula, Fiji. J Geochem Expi 36: 267–296

    Google Scholar 

  • Bailey JC, Frolova TL, Burikova IA (1989) Mineralogy, geochemistry and petrogenesis of Kurile island-arc basalts. Contrib Mineral Petrol 102: 265–280

    Google Scholar 

  • Bergman SC, Dunn DP, Krol LG (1988) Rock and mineral chemistry of the Linhaisai minette and the origin of Borneo diamonds, Central Kalimantan, Indonesia. Can Mineral 26: 23–44.

    Google Scholar 

  • Briqueu L, Bougault H, Joron JL (1984) Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: petrogenetic implications. Earth Planet Sci Lett 68: 297–308

    Google Scholar 

  • Bowman JR, Parry WT, Kropp WP, Kruer SA (1987) Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah. Eton Geol 82: 395–428

    Google Scholar 

  • Chappell BW, White AJR, Hine R (1988) Granite provinces and basement terranes in the Lachlan Fold Belt, southeastern Australia. Austr J Earth Sci 35: 505–521

    Google Scholar 

  • Clark AH, Farrar E, Kontak DJ, Langridge RJ, Arenas MJ, France LJ, McBride SL, Woodman PL, Wasteneys HA, Sandeman HA, Archibald DA (1990) Geologic and geochronologic constraints on the metallogenic evolution of the Andes of Southeastern Peru. Econ Geol 85: 1520–1583

    Google Scholar 

  • Dostal J, Zentilli M, Caelles JC, Clark AH (1977) Geochemistry and origin of volcanic rocks of the Andes (26–28° S). Contrib Mineral Petrol 63: 113–128

    Google Scholar 

  • Duncker KE, Wolff JA, Harmon RS, Leat PT, Dickin AP, Thompson RN (1991) Diverse mantle and crustal components in lavas of the NW Cerros del Rio volcanic held, Rio Grande Rift, New Mexico. Contrib Mineral Petrol 108: 331–345

    Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci Rev 24: 81–134

    Google Scholar 

  • Foley SF, Wheller GE (1990) Parallels in the origin of geochemical signatures of island are volcanics and continental potassic igneous rocks: the role of residual titanates. Chem Geol 85: 1–18

    Google Scholar 

  • Gill JB (1974) Role of underthrust oceanic crust in the genesis of a Fijian talc-alkaline suite. Contrib Mineral Petrol 43: 29–45

    Google Scholar 

  • Gonzalez OE (1975) Geologia y alteration en et cobre porfidico ‘Bajo La Alumbrera’, Republica Argentina. II Congreso Ibero-Americano de Geologia Economica 2: 247–270

    Google Scholar 

  • Gorton MP (1977) The geochemistry and origin of Quaternary volcanism in the New Hebrides. Geochem Cosmochim Acta 41: 1257–1270

    Google Scholar 

  • Handley GA, Henry DD (1990) Porgera gold deposit In:Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. Austr Inst Min Metall Monogr 14: 1717–1724.

  • Hayba DO, Bethke PM, Heald P, Foley NK (1985) Geologic, mineralogic and geochemical characteristics of volcanic-hosted precious-metal deposits. In:Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Rev Econ Geol vol 2: 129–167

  • Heald P, Foley NK, Hayba DO (1987) Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types. Econ Geol 82: 1–24

    Google Scholar 

  • Hegner E, Smith IEM (1992) Isotopic compositions of late Cenozoic volcanics from southeast Papua New Guinea: evidence for multi-component sources in are and rift environments. Chem Geol 97: 233–249

    Google Scholar 

  • Heithersay PS (1986) Endeavour 26 North copper-gold deposit, Goonumbla, N.S.W. Paragenesis and alteration zonation. 13th CMMI Congress-Geology: 181–189

  • Heithersay PS, O'Neill WJ, van der Helder P, Moore CR, Harbon PG (1990) Goonumbla porphyry copper district-Endeavour 26 North, Endeavour 22 and Endeavour 27 copper-gold deposits. In:Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. Austr Inst Min Metall Monogr 14: 1385–1398

  • Helgeson HC, Garrels RM (1968) Hydrothermal transport and deposition of gold. Econ Geol 63: 622–635

    Google Scholar 

  • Henley R W (1973) Solubility of gold in hydrothermal chloride solutions. Chem Geol 11: 73–87

    Google Scholar 

  • Horton DJ (1978) Porphyry-type copper-molybdenum mineralization belts in Eastern Queensland, Australia. Econ Geol 73: 904–921

    Google Scholar 

  • Jones GJ (1985) The Goonumbla porphyry copper deposits, N.S.W. Econ Geol 80: 591–613

    Google Scholar 

  • Joplin GA, Kiss E, Ware NG, Widdowson JR (1972) Some chemical data on members of the shoshonite association. Min Mag 38: 936–945

    Google Scholar 

  • Kesler SE, Issigonis MJ, Brownlow AH, Damon PE, Moore WJ, Northcote KE, Preto VA (1975) Geochemistry of biotites from mineralized and barren intrusive systems. Econ Geol 70: 559–567

    Google Scholar 

  • Large RR, Huston DL, McGoldrick PJ, Ruxton PA (1989) Gold distribution and Genesis in Australian volcanogenic massive sulphide deposits and their significance for gold transport models. In:Keays RR, Ramsey WRH, Groves DI (eds) The geology of gold deposits: the perspective in 1988. Econ Geol Monogr 6: 520–535Letnikov FA, Vilor NV (1990) Gold in the hydrothermal process. Translated from Russian. Geol Dept Univ Ext Univ West Australia Publ 19

  • Meen JK (1987) Formation of shoshonites from calcalkaline basalt magmas: geochemical and experimental constraints from the type locality. Contrib Mineral Petrol 97: 333–351

    Google Scholar 

  • Morrison G W (1980) Characteristics and tectonic setting of the shoshonitic rock association. Lithos 13: 97–108

    Google Scholar 

  • Moyle AJ, Doyle BJ, Hoogvliet H, Ware AR (1990) Ladolam gold deposit, Lihir Island. In:Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. Austr Inst Min Metall Monogr 14: 1793–1805

  • Müller D, Rock NMS, Groves DL (1992) Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic settings: a pilot study. Mineral Petrol 46: 259–289

    Google Scholar 

  • Müller D, Morris BJ, Farrand M (1993) Potassic alkaline lamprophyres with affinities to lamproites from the Karinya Syncline, South Australia. Lithos 30: 123–137

    Google Scholar 

  • Nelson DR, McCulloch MT, Sun SS (1986) The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochim Cosmochim Acta 50: 231–245

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonon area, Northern Turkey. Contrib Mineral Petrol 58: 63–81

    Google Scholar 

  • Perkins C, McDougall L, Claoue-Long J, Heithersay PS (1990a)40Ar/39Ar and U-Pb geochronology of the Goonumbla porphyry Cu-Au deposits, N.S.W., Australia. Econ Geol 85: 1808–1824

    Google Scholar 

  • Perkins C, McDougall I, Claoue-Long J (1990b) Dating of ore deposits with high precision: examples from the Lachlan Fold Belt, N.S.W., Australia. Austr Inst Min Metall Pacific Rim Congress 90: 105–112

    Google Scholar 

  • Perkins C, McDougall I, Walshe JL (1992) Timing of shoshonitic magmatism and gold mineralization, Sheahan-Grants and Glendale, New South Wales. Austr J Earth Sci 39: 99–110

    Google Scholar 

  • Perring CS, Barley ME, Cassidy KF, Groves DL, McNaughton NJ, Rock NMS, Bettenay LF, Golding SD, Hallberg JA (1989) The association of linear orogenic belts, mantle-crustal magmatism and Archean gold mineralization in the Eastern Yilgarn Block of Western Australia. Econ Geol Monogr 6: 571–584

    Google Scholar 

  • Powell CMcA (1984) Ordovician to earliest Silurian: marginal sea and island are. In:Veevers JJ (ed) Phanerozoic Earth history of Australia. Clarendon Press, Oxford, pp290–312

    Google Scholar 

  • Reyes M (1991) The Andacollo strata-bound gold deposit, Chile, and its position in a porphyry copper-gold system. Econ Geol 86: 1301–1316

    Google Scholar 

  • Richards JP (1990) The Porgera gold deposit, Papua New Guinea: geology, geochemistry and geochronology. Ph.D. thesis, Australian National Univ, Canberra, 121 pp (unpublished)

  • Rock NMS, Groves DJ, Perring CS, Golding SD (1989) Gold, lamprophyres and porphyries: what does their association mean? Econ Geol Monogr 6: 609–625

    Google Scholar 

  • Roedder E(1984) Fluid inclusions. In:Ribbe PH (ed) Reviews in mineralogy, vol 12. Min Soc Am, 646 pp

  • Roegge JS, Logsdon MJ, Young HS, Barr HB, Borcsik M, Holland HD (1974) Halogens in apatites from the Providencia area, Mexico. Econ Geol 69: 229–240

    Google Scholar 

  • Rush PM, Seegers HJ (1990) Ok Tedi Copper-gold deposits. In:Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. Austr Inst Min Metall Monogr 14: 1747–1754

  • Scheibner E (1972) Tectonic concepts and tectonic mapping. NSW Geol Surv Rec 14: 37–83

    Google Scholar 

  • Scheibner E (1974) Lachlan fold belt. Definition and review of structural elements. In:Markham NL, Basden H (eds) The mineral deposits of New South Wales. New South Wales Geol Surv Rec 16: 109–113

  • Scheibner E (1975) Definition and review of structural elements. In:Markham NL, Basden H (eds) The mineral deposits of New South Wales. NSW Geol Surv Rec 17: 1081–13

  • Setterfield TN (1991) Evolution of the Tavua caldera and associated hydrothermal systems, Fiji. Ph.D. thesis, Univ of Cambridge, Cambridge, 231 pp (unpublished)

    Google Scholar 

  • Seward TM (1973) Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim Cosmochim Acta 37: 379–399

    Google Scholar 

  • Sillitoe RH (1979) Some thoughts on gold-rich porphyry copper deposits. Mineralium Deposita 14: 161–174

    Google Scholar 

  • Sillitoe RH (1989) Gold deposits in Western Pacific island arcs: the magmatic connection. Econ Geol Monogr 6: 274–291

    Google Scholar 

  • Speer JA (1984) Micas in igneous rocks. In:Bailey S W (ed) Micas. Reviews in mineralogy 13: 299–349

  • Stern RJ, Bloomer SH, Lin PN, Ito E, Morris J (1988) Shoshonitic magmas in nascent arcs: new evidence from submarine volcanoes in the northern Marianas. Geology 16: 426–430

    Google Scholar 

  • Stoffregen R (1987) Genesis of acid sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Econ Geol 82: 1575–1591

    Google Scholar 

  • Stollery G, Borcsik M, Holland HD (1971) Chlorine in intrusives: a possible prospecting tool. Econ Geol 66: 361–367

    Google Scholar 

  • Stolz AJ, Varne R, Wheller GE, Foden JD, Abbott MJ (1988) The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda arc. Contrib Mineral Petrol 98: 374–389

    Google Scholar 

  • Thompson RN (1982) Magmatism of the British Tertiary volcanic province. Scott J Geol 18: 50–107

    Google Scholar 

  • Thompson JFH, Lessman J, Thompson AJB (1986) The Temora gold-silver deposit: a newly recognized style of high sulfur mineralization in the lower Paleozoic of Australia. Econ Geol 81: 732–738

    Google Scholar 

  • Vila T, Sillitoe RH (1991) Gold-rich porphyry systems in the Maricunga Belt, Northern Chile. Econ Geol 86: 1238–1260

    Google Scholar 

  • Wörner G, Harmon RS, Davidson J, Moorbath S, Turner DL, McMillan N, Nye C, Lopez-Escobar L, Moreno H (1988) The Nevados de Payachata volcanic region (18°S/69°W, N. Chile). Bull Volcanol 50: 287–303

    Google Scholar 

  • Wyborn D (1992) The tectonic significance of Ordovician magmatism in the eastern Lachlan Fold Belt. Tectonophysics 214: 177–192

    Google Scholar 

  • Wyman D, Kerrich R (1989) Archean shoshonitic lamprophyres associated with Superior Province gold deposits: distribution, tectonic setting, noble metal abundances and significance for gold mineralization. Econ Geol Monogr 6: 651–667

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, D., Groves, D.I. & Heithersay, P.S. The shoshonite porphyry Cu-Au association in the Goonumbla District, N.S.W., Australia. Mineralogy and Petrology 51, 299–321 (1994). https://doi.org/10.1007/BF01159734

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01159734

Keywords

Navigation