Skip to main content
Log in

Experimental determination of the spinel peridotite to garnet peridotite inversion at 900° C and 1,000° C in the system CaO-MgO-Al2O3-SiO2, and at 900° C with natural garnet and olivine

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Hydrothermal reversals of the univariant reaction orthopyroxene + clinopyroxene + spinel to garnet + olivine in the system CaO-MgO-Al2O3-SiO2 have been made in the range 900 °–1,000 ° C without intervention of hydrous phases. At 1,000 ° C the equilibrium is bracketed at 16.0±0.5 kbar, and, at 900 ° C, at 15.0±0.5 kbar. A flat but not well-constraineddP/dT slope is inferred. The composition of the garnet has been determined as (Ca3Al2Si3O12)0.15 (Mg3Al2Si3O12)0.85 at 900 ° C and 1,000 ° C. AdP/dT slope of 4.5±3 bars/K at 1,000 ° C, calculated from enthalpy of solution data, is within the experimental error range and agrees with the flat calculated slopes of Obata (1976) and Herzberg (1978). The large curvature of the reaction in the low-temperature range predicted by these authors is established.

Hydrothermal reversal runs on a mixture of natural pyropic garnet and forsteritic olivine and their low-pressure breakdown products were made at 900 ° C. Above 12.5 kbar, garnet + olivine are stable. Below 9.5 kbar, garnet + olivine react to pyroxenes +spinel. Between these pressures, the probable stable assemblage on the bulk composition used is garnet + olivine + orthopyroxene. Thus, the peridotite transition has only been determined within a three-kbar interval.

It is inferred from the experimental data that garnet peridotites occurring in amphibolite-granulite gneiss terrains could be formed by deep-crustal metamorphism; a subcrustal origin of the garnet-olivine association is not necessary. Seismic velocity increases at depths of 60–90 km in oceanic lithosphere, which have been considered by some to correspond to the onset of garnet in peridotite, are much deeper than the experimentally determined transition interval at 30–40 km at 900 ° C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahrens, T.J., Schubert, G.: Gabbro-eclogite reaction rate and its geophysical significance. Rev. Geophys. Space Phys.13, 383–400 (1975)

    Google Scholar 

  • Akella, J.: Garnet pyroxene equilibria in the system CaSiO3-MgSiO3-Al2O3 and in a natural mixture. Am. Mineralogist61, 589–598 (1976)

    Google Scholar 

  • Boyd, F.R.: Garnet peridotites and the system CaSiO3-MgSiO3-Al2O3. Mineral. Soc. Am. Spec. Papers3, 63–75 (1970)

    Google Scholar 

  • Charlu, T.V., Newton, R.C., Kleppa, O.J.: Enthalpies of formation at 970 K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry. Geochim. Cosmochim. Acta39, 1487–1497 (1975)

    Google Scholar 

  • Coleman, R.G.: Plate tectonic emplacement of upper mantle peridotites along continental edges. J. Geophys. Res.76, 1212–1222 (1971)

    Google Scholar 

  • Danckwerth, P.A., Newton, R.C.: Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO-Al2O3-SiO2 in the range 900 °–1,100 ° C and Al2O3 isopleths of enstatite in the spinel field. Contrib. Mineral. Petrol.66, 189–201 (1978)

    Google Scholar 

  • Ernst, W.G.: Petrochemical study of lherzolite rocks from the Western Alps. J. Petrol.19, 341–392 (1978)

    Google Scholar 

  • Evans, B.W.: Metamorphism of alpine peridotite and serpentinite. Ann. Rev. Earth Planet. Sci.5, 397–447 (1977)

    Google Scholar 

  • Forsyth, D.W.: The evolution of the upper mantle beneath midocean ridges. Tectonophysics38, 89–118 (1977)

    Google Scholar 

  • Forsyth, D.W., Press, F.: Geophysical tests of petrological models of the spreading lithosphere. J. Geophys. Res.76, 7963–7979 (1971)

    Google Scholar 

  • Green, D.H., Ringwood, A.E.: The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth Planet. Sci. Lett.3, 151–160 (1967)

    Google Scholar 

  • Guggenheim, E.: Mixtures. 270 pp. Oxford: Clarendon Press 1952

    Google Scholar 

  • Hales, A.L., Muirhead, K.J., Rynn, J.M., Gettrust, J.F.: Upper mantle travel times in Australia — A preliminary report. Phys. Earth Planet. Inter.11, 109–118 (1975)

    Google Scholar 

  • Hays, J.F., Bell, P.M.: Albite-jadeite-quartz equilibrium. Carnegie Inst. Washington Year Book72, 706–708 (1973)

    Google Scholar 

  • Hensen, B.J., Schmid, R., Wood, B.J.: Activity-composition relations for pyrope-grossular garnet. Contrib. Mineral. Petrol.51, 161–166 (1975)

    Google Scholar 

  • Herrin, E.: Regional variations of P-wave velocity in the upper mantle beneath North America. In: The Earth's crust and upper mantle. Trans. Am. Geophys. Union, Geophys. Monogr.13, 242–246 (1969)

    Google Scholar 

  • Herzberg, C.T.: Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim. Cosmochim. Acta42, 945–957 (1978)

    Google Scholar 

  • Holland, T.J.B.: High water activities in the generation of high pressure kyanite eclogites of the Tauern Window, Austria. J. Geol.87 (in press, 1979)

  • Johannes, W.: A simplified piston-cylinder apparatus of high precision. N. Jb. Mineral. Mh.7/8, 337–351 (1973)

    Google Scholar 

  • Johannes, W., Bell, P.M., Mao, H.K., Boettcher, A.L., Chipman, D.W., Hays, J.F., Newton, R.C., Seifert, F.: An interlaboratory comparison of piston-cylinder pressure and calibration using the albite breakdown reaction. Contrib. Mineral. Petrol.32, 24–38 (1971)

    Google Scholar 

  • Kawasaki, T., Matsui, Y.: Partitioning of Fe2+ and Mg2+ between olivine and garnet. Earth Planet. Sci. Lett.37, 159–166 (1977)

    Google Scholar 

  • Kelley, K.K.: Contributions to the data on theoretical metallurgy. XIII. High-temperature heat-content, heat-capacity and entropy data for the elements and inorganic compounds. U.S. Bur. Mines Bull.584, 232 (1960)

    Google Scholar 

  • Krupka, K.M., Robie, R.A., Hemingway, B.S.: The heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular, and NaAlSi3O8 glass between 350 and 1,000 K. EOS Trans. Am. Geophys. Union58, 523 (1977)

    Google Scholar 

  • Kushiro, I.: Stability of amphibole and phlogopite in the upper mantle. Carnegie Inst. Washington Year Book68, 245–247 (1969)

    Google Scholar 

  • Kushiro, I., Yoder, H.S.: Anorthite-forsterite and anorthite-enstatite reactions and their bearing on the basalt-eclogite transformation. J. Petrol.7, 337–362 (1966)

    Google Scholar 

  • Lindsley, D.H., Dixon, S.: Diopside-enstatite equilibria at 850 ° C to 1,400 ° C, 5 to 35 kb. Am. J. Sci.276 A, 295–324 (1976)

    Google Scholar 

  • Livingstone, A.: The paragenesis of spinel- and garnet-amphibole lherzolite in the Rodel area, South Harris. Scot. J. Geol.12, 293–300 (1976)

    Google Scholar 

  • MacGregor, I.D.: Stability fields of spinel and garnet peridotites in the synthetic system MgO-CaO-Al2O3-SiO2. Carnegie Inst. Washington Year Book64, 126–134 (1965)

    Google Scholar 

  • Medaris, L.G.: High-pressure peridotite in southwestern Oregon. Geol. Soc. Am. Bull.83, 41–58 (1972)

    Google Scholar 

  • Mirwald, P.W., Getting, I.C., Kennedy, G.C.: Low-friction cell for piston-cylinder high-pressure apparatus. J. Geophys. Res.80, 1519–1525 (1975)

    Google Scholar 

  • Moore, A.C., Qvale, H.: Three varieties of alpine-type ultramafic rocks in the Norwegian Caledonides and Basal Gneiss Complex. Lithos10, 149–161 (1977)

    Google Scholar 

  • Muirhead, K.J., Cleary, J.R., Finlayson, D.M.: A long-range seismic profile in southeastern Australia. Geophys. J. Roy. Astron. Soc.48, 509–519 (1977)

    Google Scholar 

  • Navrotsky, A., Kleppa, O.J.: The thermodynamics of formation of simple spinels. J. Inorg. Nucl. Chem.30, 479–498 (1968)

    Google Scholar 

  • Newton, R.C., Charlu, T.V., Kleppa, O.J.: Thermochemistry of high-pressure garnets and clinopyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim. Cosmochim. Acta41, 369–377 (1977 a)

    Google Scholar 

  • Newton, R.C., Charlu, T.V., Kleppa, O.J.: Thermochemistry of synthetic clinopyroxenes on the join CaMgSi2O6-Mg2Si2O6. Geochim. Cosmochim. Acta (in press, 1979)

  • Newton, R.C., Thompson, A.B., Krupka, K.M.: Heat capacity of synthetic Mg3Al2Si3O12 from 350 to 1,000 K and the entropy of pyrope. EOS Trans. Am. Geophys. Union58, 523 (1977 b)

    Google Scholar 

  • Obata, M.: The solubility of Al2O3 in orthopyroxenes in spinel and plagioclase peridotites and spinel pyroxenite. Am. Mineralogist61, 804–816 (1976)

    Google Scholar 

  • O'Hara, M.J., Richardson, S.W., Wilson, G.: Garnet-peridotite stability and occurrence in crust and mantle. Contrib. Mineral. Petrol.32, 48–67 (1971)

    Google Scholar 

  • Okamura, F.P., Ghose, S., Ohashi, H.: Structure and crystal chemistry of calcium Tschermak's pyroxene CaAl2SiO6. Am. Mineralogist59, 549–577 (1974)

    Google Scholar 

  • Reinsch, D.: High pressure rocks from Val Chiusella (Sesia-Lanzo zone, Italian Alps), N. Jb. Mineral. Abh.130, 89–102 (1977)

    Google Scholar 

  • Ringwood, A.E., Green, D.H.: An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics3, 383–427 (1966)

    Google Scholar 

  • Robie, R.A., Waldbaum, D.R.: Thermodynamic properties of minerals and related substances at 298.15 K (25.0 ° C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U.S. Geol. Surv. Bull.1259, 256 (1968)

    Google Scholar 

  • Rost, F., Brenneis, P.: Die Ultramifitite in Bergzug südlich des Ultentales, Provinz Alto Adige (Oberitalien). Tschermaks Mineral. Petrol. Mitt.25, 257–286 (1978)

    Google Scholar 

  • Sclater, J.G., Francheteau, J.: The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the Earth. Geophys. J., Roy. Astron. Soc.20, 509–542 (1970)

    Google Scholar 

  • Shimamura, H., Asada, T.: Apparent velocity measurements on an oceanic lithosphere. Phys. Earth Planet. Inter.13, P 15-P 22 (1976)

    Google Scholar 

  • Smith, D.: The origin and interpretation of spinel-pyroxene clusters in peridotite. J. Geol.85, 476–482 (1977)

    Google Scholar 

  • Takazi, K., Ito, E., Komatsu, M.: Experimental study in a pyroxene-spinel symplectite at high pressures and temperature. J. Geol. Soc. Japan78, 347–354 (1972)

    Google Scholar 

  • Thompson, A.B., Perkins, D., Sonderegger, U., Newton, R.C.: Heat capacities of synthetic CaAl2SiO6-CaMgSi2O6-Mg2Si2O6 pyroxenes. EOS Trans. Am. Geophys. Union59, 395 (1978)

    Google Scholar 

  • Touret, M.J.: Le faciès granulite, métamorphisme en milieu carbonique. C.R. Acad. Sci. Paris [D.]271, 2228–2231 (1970)

    Google Scholar 

  • Varne, R.: On the origin of spinel lherzolite inclusions in basaltic rocks from Tasmania and elsewhere. J. Petrol.18, 1–23 (1977)

    Google Scholar 

  • Wells, P.R.A.: Late Archaean metamorphism in the Baksefjorden region, Southwest Greenland. Contrib. Mineral. Petrol.56, 229–242 (1976)

    Google Scholar 

  • Westrum, E.F., Essene, E.J., Perkins, D.: Thermophysical properties of the garnet grossularite (Ca3Al2Si3O12). J. Chem. Thermo. (in press, 1979)

  • Wood, B.J.: The influence of pressure, temperature and bulk composition on the appearance of garnet in orthogneisses — an example from South Harris, Scotland, Earth Planet. Sci. Lett.26, 299–311 (1975)

    Google Scholar 

  • Wood, B.J.: Mixing properties of Tschermakitic clinopyroxenes. Am. Mineralogist61, 599–602 (1976)

    Google Scholar 

  • Wood, B.J.: Experimental determination of the mixing properties of solid solutions with particular reference to garnet and clinopyroxene solutions. In: Thermodynamics in Geology (D.G. Fraser, ed.), pp. 11–28. Dordrecht-Holland: D. Reidel 1977

    Google Scholar 

  • Wood, B.J., Banno, S.: Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib. Mineral. Petrol.42, 109–124 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, D.M., Newton, R.C. Experimental determination of the spinel peridotite to garnet peridotite inversion at 900° C and 1,000° C in the system CaO-MgO-Al2O3-SiO2, and at 900° C with natural garnet and olivine. Contr. Mineral. and Petrol. 68, 407–419 (1979). https://doi.org/10.1007/BF01164525

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164525

Keywords

Navigation