Skip to main content
Log in

Magnesium-lithium alloys in metal matrix composites — A preliminary report

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Procedures are described for the fabrication of fibrous composites based on magnesiumlithium alloys as a matrix. Such composites have been produced containing planar random and aligned (continuous and discontinuous) fibres of carbon, alumina and silicon carbide. For all of these, except silicon carbide whiskers, significant fibre degradation occurred, during fabrication or subsequent heat treatments, either by chemical reaction or by grain boundary penetration of lithium. Further consequences of the high atomic mobility exhibited by the matrix are manifest in the mechanical behaviour of the composites. Although considerable property enhancement is possible by fibre reinforcement, a significant diffusional contribution to the stress relaxation mechanisms results in a dependence of work hardening rate and failure strain on temperature and strain rate, even around room temperature and at relatively high strain rates. It is concluded that, although the system presents many practical difficulties, it is worthy of further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. W. Chou, A. Kelly andA. Okura,Composites 16 (1985) 187–206.

    Google Scholar 

  2. B. A. Mickucki, S. O. Shook, W. E. Mercer andW. G. Green, “Magnesium-matrix composites at DOW: Status Update”, Conference International Magnesium Association, Los Angeles, (International Magnesium Association, 1986).

  3. B. J. MacLean andM. S. Misra, “Thermal mechanical behaviour of graphite/magnesium composites”, 195–212, Proceedings Symposium. “Mechanical Behaviour of MetalMatrix Composites” (1982), edited by J. E. Hack and M. F. Amateau, Metallurgical Society of AIME, Pennsylvania, (1983).

    Google Scholar 

  4. J. E. Hack, R. A. Page andG. R. Leverant,Metall. Trans. 15A (1984) 1389–1396.

    Google Scholar 

  5. R. A. Page, J. E. Hack, R. Sherman andG. R. Leverant,ibid. 15A (1984), 1397–1405.

    Google Scholar 

  6. J. T. Evans,Acta Metall. 34 (1986) 2075–2083.

    Google Scholar 

  7. D. Webster,Metall. Trans. 13A (1982) 1511–1519.

    Google Scholar 

  8. R. T. Swann andD. M. Easterling,Composites 15 (1984) 305–309.

    Google Scholar 

  9. A. A. Nayeb-Hashemi, J. B. Clark andA. D. Petton,Bull. Alloy Phase Diagrams 5 (1984) 365–374.

    Google Scholar 

  10. J. H. Jackson, P. D. Frost, A. C. Loonam, L. W. Eastwood andC. H. Lorig,Trans. TMS-AIME 185 (1949) 149–168.

    Google Scholar 

  11. Y. Iwadate, M. Lassouari, F. Lantelme andM. Chemla,J. Appl. Electrochem. 17 (1987) 385–397.

    Google Scholar 

  12. F. D. Richardson, “Physical chemistry of melts in metallurgy”, (Academic, New York 1974).

    Google Scholar 

  13. T. W. Clyne andJ. F. Mason,Metall. Trans. 18A (1987) 1519–1530.

    Google Scholar 

  14. C. A. Stanford-Beale andT. W. Clyne,Composites Sci. and Technol. 35 (1989) 121–157.

    Google Scholar 

  15. J. D. Birchall,Trans. J. Brit. Ceram. Soc. 82 (1983) 143–145.

    Google Scholar 

  16. G. R. Cappleman, J. F. Watts andT. W. Clyne,J. Mater. Sci. 20 (1985) 2159–2168.

    Google Scholar 

  17. S. Yajima, Y. Hasegawa, J. Hayashi andM. Iimura,ibid. 13 (1978) 2569–2576.

    Google Scholar 

  18. G. Simon andA. R. Bunsell,ibid. 19 (1984) 3649–3657.

    Google Scholar 

  19. C. M. Warwick andT. W. Clyne, “Microstructural stability of fibrous composites based on Mg-Li alloys” in 3rd European Conference on Composite Materials, Bordeaux, edited by A. Bunsell, P. Lamicq and A. Massiah. (Elsevier, 1989) pp. 205–212.

  20. R. Warren andC. H. Andersson,Composites 15 (1984) 16–24, 101–111.

    Google Scholar 

  21. R. C. Mehan, M. R. Jackson andM. D. McConnell,J. Mater. Sci. 18 (1983) 3195–3205.

    Google Scholar 

  22. R. R. Kieschke, R. E. Somekh andT. W. Clyne, “The protection of SiC monofilaments against attack in metal matrix composites by sputter-deposited barrier layers”, in preparation.

  23. “Janaf Thermochemical Tables, 2nd edn”, US Department of Commerce, NSRDS-NBS, 37 (1971).

  24. I. Barin andO. Knacke, “Thermochemical Properties of Inorganic Substances”, (Springer, New York, 1973).

    Google Scholar 

  25. A. YamamotoTokai Carbon, UK patent GB211533A, (1983).

  26. J. F. Mason andT. W. Clyne, “Microstructural development and mechanical behaviour of whisker-reinforced Mg-Li alloys”, in 3rd European Conference on Composite Materials, Bordeaux, edited by A. Bunsell, P. Lamicq and A. Massiah (Elsevier, 1989) pp. 213–220.

  27. J. Harding, M. Taya, B. Derby andS. Pickard, “An investigation of the high strain rate deformation of SiCw/2124 Al composite”, Proc. ICCM VI/ECCM 2, 2.224–2.233, edited by F. L. Mathews, N. C. R. Buskell, J. M. Hodgkinson and J. Morton (Elsevier, London, 1987).

    Google Scholar 

  28. S. M. Pickard, B. Derby, J. Harding andM. Taya,Scripta Metall. 22 (1988) 601–606.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, J.F., Warwick, C.M., Smith, P.J. et al. Magnesium-lithium alloys in metal matrix composites — A preliminary report. J Mater Sci 24, 3934–3946 (1989). https://doi.org/10.1007/BF01168957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01168957

Keywords

Navigation