Skip to main content
Log in

Toughness properties of a three-dimensional carbon-epoxy composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The three-dimensional (3D) orthogonal interlocked fabric contains through-the-thickness rein-forcement in order to enhance the interlaminar fracture toughness of the composite. The interlaminar fracture toughness of a carbon-epoxy orthogonal interlocked fabric composite was experimentally determined by use of the recently developed tabbed double cantilever beam specimen. The data reduction methods applicable to these tests and materials and the interpretation of the results were discussed. The results of critical strain energy release rate,G Ic, were compared to those of a two-dimensional (2D) laminate having the same in-plane structure. The energy-dissipating crack propagation processes were described. The in-plane fracture toughness of the 3D fabric was experimentally measured and compared to that of the 2D laminate. The through-the-thickness fibres were found to create a ten-fold increase in interlaminar toughness, and a 25% improvement in the in-plane fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Wilkins, “The Engineering Significance of Defects in Composite Structures”, AGARD Conference Proceeding No. 355 (Elsevier, Essex, 1983).

    Google Scholar 

  2. J. W. Gillespie Jr,Comp. Struct. 2 (1984) 49.

    Google Scholar 

  3. R. J. Rothschilds, J. W. Gillespie Jr andL. A. Carlsson, “Instability Related Delamination Growth in Thermoset and Thermoplastic Composites”, ASTM STP 972 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1988).

    Google Scholar 

  4. D. H. Hunston,Comp. Technol. Rev. 6 (4) (1984) 176.

    Google Scholar 

  5. J. E. Masters, “Characterization of Impact Development in Graphite Epoxy Laminates”, ASTM STP 948 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1987) pp. 238–58.

    Google Scholar 

  6. Y. Ogo, Master's thesis, University of Delaware (1987).

  7. L. A. Mignery, T. M. Tan andC. T. Sun, “The Use of Stitching to Suppress Delamination in Laminated Composites”, ASTM STP 876 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1985) pp. 371–85.

    Google Scholar 

  8. A. B. Macander, R. M. Crane andE. T. Camponeschi Jr, “Fabrication and Mechanical Properties of Multidimensionally (X-D) Braided Composite Materials”, ASTM STP 873 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1986) pp. 422–45.

    Google Scholar 

  9. H. B. Dexter andJ. G. Funk, “Impact Resistance and Interlaminar Fracture Toughness of Through-the-Thickness Reinforced Graphite Epoxy”, AIAA Paper, 86-1020-CP (1986) pp. 700–709.

  10. S. W. Fowser, Master's thesis, University of Delaware (1986).

  11. T. R. Guess andE. D. Reedy Jr,Compos. Technol. Res. 7 (4) (1985) 136.

    Google Scholar 

  12. V. A. Guénon, T. W. Chou andJ. W. Gillespie Jr, Fabricating Composites '87 Conference, SME technical paper, 15–18 September, 1987 Philadelphia, Pennsylvania (SME, Michigan, 1987) EM 87-551; 1–17.

    Google Scholar 

  13. L. Taske andA. P. Majidi, in Proceedings of the American Society for Composites, Second Technical Conference, 23–25 September, University of Delaware, Newark, Delaware (Technomic, Lancaster, PA, 1987).

    Google Scholar 

  14. J. M. Whitney, C. E. Browning andW. Hoogsteden,J. Reinf. Plastics Compos. October (1982) 297.

  15. P. E. Keary, L. B. Ilcewicz, C. Shaar andJ. Trostle,J. Compos. Mater. 19 (2) (1985) 154.

    Google Scholar 

  16. D. J. Wilkins, J. R. Eisenmann, R. A. Camin, W. S. Margolis andR. A. Benson, “Characterizing Delamination Crack Growth in Graphite Epoxy”, ASTM STP 775 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1982) pp. 168–83.

    Google Scholar 

  17. NASA, “Standard Tests for Toughened Resin Composites”, Revised Edition, NASA Reference Publication 1092 ACEE Composites Project Office, Langley Research Center, Hampton, Virginia (1983).

    Google Scholar 

  18. E. J. Hearn, “Mechanics of Materials”, 2nd Edn, (Pergamon, 1985) International Series on Materials Science and Technology, Vol. 19, p. 271.

  19. S. Mostovoy, P. B. Crosley andE. J. Ripling,J. Mater. 2 (1967) 661.

    Google Scholar 

  20. L. A. Carlsson andR. B. Pipes, “Experimental Characterization of Advanced Composite Materials” (Prentice Hall, New-Jersey, 1986) pp. 19–21.

    Google Scholar 

  21. Reynolds Aluminum Supply Company, Product and Data Catalog (Reynolds, Richmond, Virginia, 1976).

    Google Scholar 

  22. S. W. Tsai, Composites Design 1986, Think Composites, p. 11–4.

  23. J. M. Whitney andJ. W. Gillespie Jr, “CEMCAL: Composites Experimental Mechanics Calculations”, Center for Composite Materials Software, University of Delaware (1987).

  24. J. W. Gillespie, L. A. Carlsson andA. J. Smiley,Compos. Sci. Technol. 28 (1987).

  25. K. Friedrich, “Microstructure and Fracture of Fiber Reinforced Thermoplastic Polyethylene Terephthalate (Rynite®)” (CCM-80-17 Center for Composite Materials Publication, University of Delaware, 1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guénon, V.A., Chou, T.W. & Gillespie, J.W. Toughness properties of a three-dimensional carbon-epoxy composite. J Mater Sci 24, 4168–4175 (1989). https://doi.org/10.1007/BF01168991

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01168991

Keywords

Navigation