Skip to main content
Log in

Analytical study of the thermal shock problem of a half-space with various thermoelastic models

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The thermal shock problem of a half-space is frequently used as a test example for checking computer programs which are suitable for solving thermoelastic problems. As there are no exact solutions for the problem formulated on the basis of complicated models, authors have compared their own results to previous numerical results in their publications so far. In the present paper six thermoelastic models are investigated. Curves of temperature, displacement and stress fields arising as a result of sudden and ramp-type surface heating are given in a very handy form for program testing. A thorough analysis of elastic and thermal waves is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chadwick, P.: Thermoelasticity. The dynamical theory. In: Progress in solid mechanics, vol. I (Sneddon, I. N., ed.), pp. 263–328. Amsterdam: North-Holland 1960.

    Google Scholar 

  2. Nowinski, J. L.: Theory of thermoelasticity with applications, 1st ed., p. 135. The Netherlands: Sijthoff & Noordhoff International Publishers 1978.

    Google Scholar 

  3. Lord, H. W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids15, 299–309 (1967).

    Google Scholar 

  4. Green, A. E., Lindsay, K. A.: Thermoelasticity. J. Elasticity2, 1–7 (1972).

    Google Scholar 

  5. Danilovskaya, V. I.: Thermal stresses in an elastic half-space due to sudden heating of its boundary (in Russian). Prikladnaya Matematika i Mechanika14, 316–318 (1950).

    Google Scholar 

  6. Sternberg, E., Chakravorty, J. G.: On inertia effects in a transient thermoelastic problem. J. Appl. Mech.26, 503–509 (1959).

    Google Scholar 

  7. Boley, B. A., Tolins, I. S.: Transient coupled thermoelastic boundary value problems in the half-space. J. Appl. Mech.29, 637–646 (1962).

    Google Scholar 

  8. Wilms, E. V.: On coupling effects in transient thermoelastic problems. J. Appl. Mech.31, 719–722 (1964).

    Google Scholar 

  9. Ziegler, F.: Ebene Wellenausbreitung im Halbraum bei Zufallserregung und Kopplung zwischen Spannungs- und Temperaturfeld. Acta Mechanica2, 307–327 (1966).

    Google Scholar 

  10. Norwood, F. R., Warren, W. E.: Wave propagation in the generalized dynamical theory of thermoelasticity. Quart. J. Mech. Appl. Math.22, 283–290 (1969).

    Google Scholar 

  11. Lord, H. W., Lopez, A. A.: Wave propagation in thermoelastic solids at very low temperature. Acta Mechanica10, 85–98 (1970).

    Google Scholar 

  12. Nickell, R. E., Sackman, J. L.: Approximate solutions in linear, coupled thermoelasticity. J. Appl. Mech.35, 255–266 (1968).

    Google Scholar 

  13. Keramidas, G. A., Ting, E. C.: A finite element formulation for thermal stress analysis. Part II. Finite element formulation. Nucl. Eng. Des.39, 277–287 (1976).

    Google Scholar 

  14. Ting, E. C., Chen, H. C.: A unified numerical approach for thermal stress waves. Computers & Structures15, 165–175 (1982).

    Google Scholar 

  15. Prevost, J. H., Tao, D.: Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times. J. Appl. Mech.50, 817–822 (1983).

    Google Scholar 

  16. Tamma, K. K., Railkar, S. B.: Nonlinear/linear unified thermal stress formulations: transfinite element approach. Comp. Meth. Appl. Mech. Eng.64, 415–428 (1987).

    Google Scholar 

  17. Tamma, K. K., Railkar, S. B.: A generalized hybrid transfinite element computational approach for nonlinear/linear unified thermal-structural analysis. Computers & Structures26, 655–665 (1987).

    Google Scholar 

  18. Tamma, K. K., Railkar, S. B.: Special purpose hybrid transfinite elements and unified computational methodology for accurately predicting thermoelastic stress waves. Computers & Structures28, 25–36 (1988).

    Google Scholar 

  19. Tamma, K. K., Railkar, S. B.: On heat displacement based hybrid transfinite element formulations for uncoupled/coupled thermally induced stress wave propagation. Computers & Structures30, 1025–1036 (1988).

    Google Scholar 

  20. Tamma, K. K., Railkar, S. B.: Evaluation of thermally induced non-Fourier stress wave disturbances via Tailored hybrid transfinite element formulations. Computers & Structures34, 5–16 (1990).

    Google Scholar 

  21. Tamma, K. K., Namburu, R. R.: A new unified explicit architecture of thermal/structural dynamic algorithms: applications to coupled thermoelasticity. Computers & Structures37, 535–545 (1990).

    Google Scholar 

  22. Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate's method. Computer J.17, 371–376 (1974).

    Google Scholar 

  23. Chandrasekhariah, D. S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev.39, 355–376 (1986).

    Google Scholar 

  24. Knopoff, L., Gilbert, F.: First motion methods in theoretical seismology. J. Acoust. Soc. Am.31, 1161–1168 (1959).

    Google Scholar 

  25. Achenbach, J. D.: The influence of heat conduction on propagating stress jumps. J. Mech. Phys. Solids16, 273–282 (1968).

    Google Scholar 

  26. Chester, M.: Second sound in solids. Phys. Rev.131, 2013–2015 (1963).

    Google Scholar 

  27. Francis, P. H.: Thermomechanical effects in elastic wave propagation: a survey. J. Sound Vibration21, 181–192 (1972).

    Google Scholar 

  28. Balla, M.: Finite element analysis of classical and generalized coupled thermoelastic problems. Submitted for publication

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balla, M. Analytical study of the thermal shock problem of a half-space with various thermoelastic models. Acta Mechanica 89, 73–92 (1991). https://doi.org/10.1007/BF01171248

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01171248

Keywords

Navigation