Skip to main content
Log in

Creep of ceramics

Part 2 An examination of flow mechanisms

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This review analyses a wide range of experimental data on the creep of ceramic materials and reveals many similarities with the creep of metals. It is demonstrated that there are two important differences in the creep behaviour of ceramics: (1) there is an enhanced role of diffusion creep, and (2) in the power-law regime, ceramics divide into two categories with stress exponents of ∼ 5 and ∼ 3, respectively. It is concluded that the behaviour with an exponent of ∼ 5 represents fully ductile behaviour as in f cc metals, whereas the behaviour with an exponent of ∼ 3 is due to dislocation climb from Bardeen-Herring sources under conditions where there is either a lack of five independent slip systems or, if five independent slip systems are available, a lack of interpenetration of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Cannon andT. G. Langdon,J. Mater. Sci. 18 (1983) 1.

    Google Scholar 

  2. F. R. N. Nabarro, “Report of a Conference on Strength of Solids” (The Physical Society, London, 1948) p. 75.

    Google Scholar 

  3. C. Herring,J. Appl. Phys. 21 (1950) 437.

    Google Scholar 

  4. G. B. Gibbs,Mém. Sci. Rev. Mét. 62 (1965) 781.

    Google Scholar 

  5. R. L. Coble,J. Appl. Phys. 34 (1963) 1679.

    Google Scholar 

  6. R. S. Gordon,J. Amer. Ceram. Soc. 56 (1973) 147.

    Google Scholar 

  7. R. S. Gordon, “Mass Transport Phenomena in Ceramics”, edited by A. R. Cooper and A. H. Heuer (Plenum, New York, 1975) p. 445.

    Google Scholar 

  8. A. G. Evans andT. G. Langdon,Prog. Mater. Sci. 21 (1976) 171.

    Google Scholar 

  9. J. Harper andJ. E. Dorn,Acta Metall. 5 (1957) 654.

    Google Scholar 

  10. P. Yavari, D. A. Miller andT. G. Langdon,ibid. 30 (1982) 871.

    Google Scholar 

  11. T. G. Langdon andP. Yavari,ibid. 30 (1982) 881.

    Google Scholar 

  12. J. P. Hirth andJ. Lothe, “Theory of Dislocations” (McGraw-Hill, New York, 1968).

    Google Scholar 

  13. J.-P. Poirier, J. Peyronneau, I. Y. Gesland andG. Brebec,Phys. Earth Planet. Int. 32 (1983) 273.

    Google Scholar 

  14. W. B. Banerdt andC. G. Sammis,ibid. 41 (1985) 108.

    Google Scholar 

  15. P. J. Dixon-Stubbs andB. Wilshire,Philos. Mag. A 45 (1982) 519.

    Google Scholar 

  16. T. G. Langdon,ibid. 47 (1983) L29.

    Google Scholar 

  17. A. E. Paladino andR. L. Coble,J. Amer. Ceram. Soc. 46 (1963) 133.

    Google Scholar 

  18. Y. Oishi andW. D. Kingery,J. Chem. Phys. 33 (1960) 480.

    Google Scholar 

  19. D. H. Chung andG. Simmons,J. Appl. Phys. 39 (1968) 5316.

    Google Scholar 

  20. A. E. Paladino andW. D. Kingery,J. Chem. Phys. 37 (1962) 957.

    Google Scholar 

  21. Y. Oishi andW. D. Kingery,ibid. 33 (1960) 905.

    Google Scholar 

  22. N. Soga andO. L. Anderson,J. Amer. Ceram. Soc. 49 (1966) 355.

    Google Scholar 

  23. R. Lindner andG. D. Parfitt,J. Chem. Phys. 26 (1957) 182.

    Google Scholar 

  24. J. B. Holt,J. Nucl. Mater. 11 (1964) 107.

    Google Scholar 

  25. R. E. Fryxell andB. A. Chandler,J. Amer. Ceram. Soc. 47 (1964) 283.

    Google Scholar 

  26. S. B. Austerman,J. Nucl. Mater. 14 (1964) 248.

    Google Scholar 

  27. J. D. Hong, R. F. Davis andD. E. Newbury,J. Mater Sci. 16 (1981) 2485.

    Google Scholar 

  28. J. B. Wachtman andD. G. Lam,J. Amer. Ceram. Sac. 42 (1959) 254.

    Google Scholar 

  29. M. H. Hon, R. F. Davis andD. E. Newbury,J. Mater. Sci. 15 (1980) 2073.

    Google Scholar 

  30. K. Kijima ANDS. Shirasaki,J. Chem. Phys. 65 (1976) 2668.

    Google Scholar 

  31. D. C. Larsen andJ. W. Adams, “Property Screening and Evaluation of Ceramic Turbine Materials”, Semiannual Report No. 8, June 1980, USAF Contract F33615-C-5100, pp. 22, 55.

  32. D. K. Reimann andT. S. Lundy,J. Amer. Ceram. Soc. 52 (1969) 511.

    Google Scholar 

  33. M. O. Marlowe,J. Nucl. Mater. 33 (1969) 242.

    Google Scholar 

  34. R. J. Hawkins andC. B. Alcock,ibid. 26 (1968) 112.

    Google Scholar 

  35. S. Spinner, F. P. Knudsen andL. Stone,J. Res. Natl Bur. Stds 67C (1963) 39.

    Google Scholar 

  36. S. Spinner, L. Stone andF. P. Knudsen,ibid. 67C (1963) 93.

    Google Scholar 

  37. J. F. Laurent andJ. Bénard,J. Phys. Chem. Solids 7 (1958) 218.

    Google Scholar 

  38. S. Hart,J. Phys. D 1 (1968) 1285.

    Google Scholar 

  39. M. Eisenstadt,Phys. Rev. 132 (1963) 630.

    Google Scholar 

  40. P. Villaine,Diffusion Data 3 (1968) 515.

    Google Scholar 

  41. A. Padel andCh. de Novion,J. Nucl. Mater. 33 (1969) 40.

    Google Scholar 

  42. W. C. Hagel,Trans. AIME 236 (1966) 179.

    Google Scholar 

  43. R. C. Liebermann andE. Schreiber,J. Geophys. Res. 73 (1968) 6585.

    Google Scholar 

  44. O. L. Anderson, E. Schreiber, R. C. Liebermann andN. Soga,Rev. Geophys. 6 (1968) 491.

    Google Scholar 

  45. W. H. Rhodes andR. E. Carter,J. Amer. Ceram. Soc. 49 (1966) 244.

    Google Scholar 

  46. N. G. Pace, G. A. Saunders, Z. Suemeugen andJ. S. Thorp,J. Mater. Sci. 4 (1969) 1106.

    Google Scholar 

  47. A. Crosby andP. E. Evans,ibid. 8 (1973) 1573.

    Google Scholar 

  48. A. H. Heuer, R. M. Cannon andN. J. Tighe, “Ultra Fine-Grain Ceramics”, edited by J. J. Burke, N. L. Reed and V. Weiss (Syracuse University Press, Syracuse, New York, 1970) p. 339.

    Google Scholar 

  49. P. A. Lessing andR. S. Gordon, “Deformation of Ceramic Materials”, edited by R. C. Bradt and R. E. Tressler (Plenum, New York, 1975) p. 271.

    Google Scholar 

  50. R. C. Folweiler,J. Appl. Phys. 32 (1961) 773.

    Google Scholar 

  51. C. K. L. Davies, “Physical Metallurgy of Reactor Fuel Elements”, edited by J. E. Harris and E. C. Sykes (The Metals Society, London, 1975) p. 99.

    Google Scholar 

  52. W. R. Cannon andO. D. Sherby,J. Amer. Ceram. Soc. 60 (1977) 44.

    Google Scholar 

  53. R. T. Tremper, PhD dissertation, University of Utah (1971).

  54. R. R. Vandervoort andW. L. Barmore,J. Amer. Ceram. Soc. 43 (1963) 180.

    Google Scholar 

  55. W. L. Barmore andR. R. Vandervoort,ibid. 48 (1965) 499.

    Google Scholar 

  56. R. F. Davis, personal communication (1985).

  57. M. S. Seltzer,Bull. Amer. Ceram. Soc. 56 (1977) 418.

    Google Scholar 

  58. L. E. Poteat andC. S. Yust, “Ceramic Microstructures,” edited by R. M. Fulrath and J. A. Pask (Wiley, New York, 1968) p. 646.

    Google Scholar 

  59. P. E. Bohaboy, R. R. Asamoto andA. E. Conti, Rprt. No. GEAP-10054 (General Electric Breeder Reactor Development Operation, Sunnyvale, California, 1969).

  60. J. A. C. Marples andA. Hough, “Plutonium 1970 and Other Actinides”, edited by W. N. Miner (The Metallurgical Society of AIME, New York, 1970) p. 479.

    Google Scholar 

  61. M. S. Seltzer, A. H. Claver andB. A. Wilcox,J. Nucl. Mater. 34 (1970) 351.

    Google Scholar 

  62. Idem, ibid. 44 (1972) 331.

    Google Scholar 

  63. B. Burton andG. L. Reynolds,Acta Metall. 21 (1973) 1641.

    Google Scholar 

  64. J. Weertman,J. Appl. Phys. 28 (1957) 362.

    Google Scholar 

  65. P. M. Hazzledine,Can. J. Phys. 45 (1967) 765.

    Google Scholar 

  66. J. Weertman, “Rate Processes in Plastic Deformation of Materials”, edited by J. C. M. Li and A. K. Mukherjee (American Society for Metals, Metals Park, Ohio, 1975) p. 315.

    Google Scholar 

  67. P. M. Burke, PhD dissertation, Stanford University (1968).

  68. O. D. Sherby andP. M. Burke,Prog. Mater. Sci. 13 (1968) 325.

    Google Scholar 

  69. J. Weertman,J. Appl. Phys. 28 (1957) 1185.

    Google Scholar 

  70. F. A. Mohamed andT. G. Langdon,Acta Metall. 22 (1974) 779.

    Google Scholar 

  71. S. Takeuchi andA. S. Argon,ibid. 24 (1976) 883.

    Google Scholar 

  72. W. R. Cannon andO. D. Sherby,J. Amer. Ceram. Soc. 56 (1973) 157.

    Google Scholar 

  73. F. R. N. Nabarro,Philos. Mag. 16 (1967) 231.

    Google Scholar 

  74. J. Weertman,Trans. ASM 61 (1968) 681.

    Google Scholar 

  75. D. R. Cropper andT. G. Langdon,Philos. Mag. 18 (1968) 1181.

    Google Scholar 

  76. W. R. Cannon andO. D. Sherby,J. Amer. Ceram. Soc. 53 (1970) 346.

    Google Scholar 

  77. M. S. Seltzer, T. R. Wright andD. P. Moak,ibid. 58 (1975) 138.

    Google Scholar 

  78. C. H. Carter, R. F. Davis andJ. Bentley,ibid. 67 (1984) 409.

    Google Scholar 

  79. S. I. Warshaw andF. H. Norton,ibid. 45 (1962) 479.

    Google Scholar 

  80. G. Engelhardt andF. Thümmler,Ber. Dent. Keram. Ges. 47 (1970) 571.

    Google Scholar 

  81. A. G. Crouch,J. Amer. Ceram. Soc. 55 (1972) 558.

    Google Scholar 

  82. J. H. Hensler andG. V. Cullen,ibid. 51 (1968) 178.

    Google Scholar 

  83. T. G. Langdon andJ. A. Pask,Acta Metall. 18 (1970) 505.

    Google Scholar 

  84. W. L. Barmore andR. R. Vandervoort,J. Amer. Ceram. Soc. 50 (1967) 316.

    Google Scholar 

  85. C. H. Carter, R. F. Davis andJ. Bentley,ibid. 67 (1984) 732.

    Google Scholar 

  86. M. S. Seltzer andP. K. Talty,ibid. 58 (1975) 124.

    Google Scholar 

  87. F. A. Mohamed andT. G. Langdon,J. Appl. Phys. 45 (1974) 1965.

    Google Scholar 

  88. R. F. Firestone andA. H. Heuer,J. Amer. Ceram. Soc. 59 (1976) 24.

    Google Scholar 

  89. T. G. Langdon, “Dislocations and Properties of Real Materials” (The Institute of Metals, London, 1985) p. 221.

    Google Scholar 

  90. J. E. Bird, A. K. Mukherjee andJ. E. Dorn, “Quantitative Relation Between Properties and Microstructure,” edited by D. G. Brandon and A. Rosen (Israel Universities Press, Jerusalem, 1969) p. 255.

    Google Scholar 

  91. V. Pontikis andJ.-P. Poirier,Philos. Mag. 32 (1975) 577.

    Google Scholar 

  92. G. Streb andB. Reppich,Phys. Status Solidi (a) 16 (1973) 493.

    Google Scholar 

  93. D. R. Cropper andJ. A. Pask,Philos. Mag. 27 (1973) 1105.

    Google Scholar 

  94. C. B. Raleigh andS. H. Kirby,Mineral. Soc. Amer. Spec. Pap. 3 (1970) 113.

    Google Scholar 

  95. H. W. Green andS. V. Radcliffe, “Flow and Fracture of Rocks”, edited by H. C. Heard, I. Y. Borg, N. L. Carter and C. B. Raleigh (American Geophysical Union, Washington, DC, 1972) p. 139.

    Google Scholar 

  96. W. Hüther andB. Reppich,Philos. Mag. 28 (1973) 363.

    Google Scholar 

  97. F. Schuh, W. Blum andB. Ilschner,Proc. Brit. Ceram. Soc. 15 (1970) 143.

    Google Scholar 

  98. J.-P. Poirier,Phil. Mag. 26 (1972) 701.

    Google Scholar 

  99. W. Blum, personal communication (1976).

  100. A. V. Stepanov andI. M. Eidus,J. Exper. Theoret. Phys. USSR 29 (1955) 669.

    Google Scholar 

  101. V. Pontikis andJ.-P. Poirier,Scripta Metall. 8 (1974) 1427.

    Google Scholar 

  102. J. B. Bilde-Sorensen,Acta Metall. 21 (1973) 1495.

    Google Scholar 

  103. M. Hurm andB. Escaig,J. Physique. Colloque. C9 34 (1973) C9–347.

    Google Scholar 

  104. H. W. Green andS. V. Radcliffe,Earth Planet. Sci. Lett. 15 (1972) 239.

    Google Scholar 

  105. A. E. Ringwood, “Composition and Petrology of the Earth's Mantle” (McGraw-Hill, New York, 1975).

    Google Scholar 

  106. W. B. Durham, C. Goetze andB. Blake,J. Geophys. Res. 82 (1977) 5755.

    Google Scholar 

  107. R. J. Twiss,Pure Appl. Geophys. 115 (1977) 227.

    Google Scholar 

  108. T. G. Langdon, “Strength of Metals and Alloys (ICSMA 6)”, Vol. 3, edited by R. C. Gifkins (Pergamon, Oxford, 1983) p. 1105.

    Google Scholar 

  109. J. V. Ross, H. G. Avé Lallemant andN. L. Carter,Tectonophys. 70 (1980) 39.

    Google Scholar 

  110. A. J. Ardell, J. M. Christie andJ. A. Tullis,Cryst. Lattice Defects 4 (1973) 275.

    Google Scholar 

  111. S. White,Contrib. Mineral. Petrol. 70 (1979) 193.

    Google Scholar 

  112. J. B. Bilde-Sörensen,J. Amer. Ceram. Soc. 55 (1972) 606.

    Google Scholar 

  113. A. H. Clauer andB. A. Wilcox,ibid. 59 (1976) 89.

    Google Scholar 

  114. D. L. Kohlstedt, C. Goetze andW. B. Durham, “The Physics and Chemistry of Minerals and Rocks”, edited by R. G. J. Strens (Wiley, London, 1976) p. 35.

    Google Scholar 

  115. C. Goetze andD. L. Kohlstedt,Contrib. Mineral. Petrol. 59 (1977) 293.

    Google Scholar 

  116. T. G. Langdon,Met. Trans. 3 (1972) 797.

    Google Scholar 

  117. T. G. Langdon andR. B. Vastava, “Mechanical Testing for Deformation Model Development”, edited by R. W. Rohde and J. C. Swearengen (American Society for Testing and Materials, Philadelphia, 1982) STP 765, p. 435.

    Google Scholar 

  118. J. H. Hensler andG. V. Cullen,J. Amer. Ceram. Soc. 50 (1967) 584.

    Google Scholar 

  119. M. Tokar,ibid. 56 (1973) 173.

    Google Scholar 

  120. H. C. Heard andC. B. Raleigh,Geol. Soc. Amer. Bull. 83 (1972) 935.

    Google Scholar 

  121. T. G. Langdon,J. Amer. Ceram. Soc. 58 (1975) 92.

    Google Scholar 

  122. S. Takeuchi andA. S. Argon,J. Mater. Sci. 11 (1976) 1542.

    Google Scholar 

  123. S. H. Kirby andC. B. Raleigh,Tectonophys. 19 (1973) 165.

    Google Scholar 

  124. R. B. Gordon,J. Geophys. Res. 70 (1965) 2413.

    Google Scholar 

  125. J. Weertman,Rev. Geophys. Space Phys. 8 (1970) 145.

    Google Scholar 

  126. Idem, Phil. Trans. R. Soc. A 288 (1978) 9.

    Google Scholar 

  127. D. L. Kohlstedt andC. Goetze,J. Geophys. Res. 79 (1974) 2045.

    Google Scholar 

  128. H. Tsukahara,J. Phys. Earth 22 (1974) 343.

    Google Scholar 

  129. J. W. Glen,Proc. R. Soc. A 228 (1955) 519.

    Google Scholar 

  130. M. Mellor andJ. H. Smith, “Physics of Snow and Ice”, Vol. 1, Part 2, edited by H. Ôura (Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan, 1967) p. 843.

    Google Scholar 

  131. T. G. Langdon, “Physics and Chemistry of Ice,” edited by E. Whalley, S. J. Jones and L. W. Gold (Royal Society of Canada, Ottawa, 1973) p. 356.

    Google Scholar 

  132. J.-P. Le Compte, J. Jarrige, J. Mexmain, R. J. Brook andF. L. Riley,J. Mater. Sci. 16 (1981) 3093.

    Google Scholar 

  133. O. D. Sherby andM. T. Simnad,Trans. ASM 54 (1961) 227.

    Google Scholar 

  134. A. M. Brown andM. F. Ashby,Acta Metall. 28 (1980) 1085.

    Google Scholar 

  135. A. H. Chokshi andJ. R. Porter,J. Amer. Ceram. Soc. 69 (1986) C-37.

    Google Scholar 

  136. M. Jimenez-Melendo, J. Cabrera-Calao, A. Dominguez-Rodriguez andJ. Castaing,J. Physique 44 (1983) L-339.

    Google Scholar 

  137. P. Yavari, F. A. Mohamed andT. G. Langdon,Acta Metall. 29 (1981) 1495.

    Google Scholar 

  138. B. Wilshire andB. Watkins,J. Mater. Sci. 12 (1977) 2135.

    Google Scholar 

  139. R. W. Evans, P. J. Scharning andB. Wilshire, “Creep Behaviour of Crystalline solids”, edited by B. Wilshire and R. W. Evans (Pineridge Press, Swansea, Wales, 1985) p. 201.

    Google Scholar 

  140. H. E. Evans andG. Knowles,Acta Metall. 25 (1977) 963.

    Google Scholar 

  141. Idem, ibid. 26 (1978) 141.

    Google Scholar 

  142. G. W. Groves andA. Kelly,Philos. Mag. 19 (1969) 977.

    Google Scholar 

  143. F. A. Mohamed andT. G. Langdon,J. Amer. Ceram. Soc. 58 (1975) 533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, W.R., Langdon, T.G. Creep of ceramics. J Mater Sci 23, 1–20 (1988). https://doi.org/10.1007/BF01174028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174028

Keywords

Navigation