Skip to main content
Log in

Corrosion inhibition in magnesium-aluminium-based alloys induced by rapid solidification processing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of rapid solidification on the corrosion behaviour in aerated 0.001 M NaCl solution of Mg-Al alloys containing 9.6 to 23.4wt% AI has been investigated in comparison with chill-cast material. Polarization studies show that rapid solidification decreases corrosion current by up to two orders of magnitude corresponding to a corrosion rate of 6 to 11 mil y−1. Increasing the aluminium content in solid solution by rapid solidification gave rise to a steep increase in pitting potential between 10 and 23 wt% Al and resulted in development of an anodic plateau at ∼ 30μAcm−2 attributable to magnesium depletion for the alloy surface and formation of a protective film. Chemical analysis of the electrolyte as a function of dissolution time for the rapidly solidified material indicated that initially only magnesium dissolved and that this dissolution of magnesium ceased within 2 to 5 min. The results indicate the formation of an aluminium-enriched interdiffusion zone at the surface underlying a more stable surface oxide than for ingot-processed Mg-Al-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Bothwell, in “The Corrosion of the Light Metals”, edited by R. T. Foleyet al. (Wiley, New York, 1967) p. 259.

    Google Scholar 

  2. E. F. Emley, in “Principles of Magnesium Technology” (Pergamon, Oxford, 1966) p. 670.

    Google Scholar 

  3. R. S. Busk, in “Magnesium Products Design” (Marcel Dekker, New York, 1987) p. 498.

    Google Scholar 

  4. M. Pourbaix, in “Atlas of Electrochemical Equilibria in Aqueous Solutions” (Pergamon, Oxford, 1966) p. 139.

    Google Scholar 

  5. R. E. Lewis, A. Joshi andH. Jones, in “Processing of Structural Metals by Rapid Solidification”, edited by F. H. Froes and S. J. Savage (American Society for Metals, Metals Park, Ohio, 1987) p. 367.

    Google Scholar 

  6. S. K. Das andC. F. Chang, in “Rapidly Solidified Crystalline Alloys”, edited by S. K. Das (The Metallurgical Society of RIME, Warrendale, Pennsylvania, 1985) p. 137.

    Google Scholar 

  7. C. F. Chang, S. K. Das andD. Raybould, in “Rapidly Solidified Materials”, edited by P. W. Lee and R. S. Carbonara (American Society for Metals, Metals Park, Ohio, 1986) p. 129.

    Google Scholar 

  8. S. K. Das, C. F. Chang andD. Raybould,Light Metal Age December (1986) 5.

  9. F. Hehmann, R. G. J. Edyvean, H. Jones andF. Sommer, Conference Proceedings PM Aerospace Materials '87, edited by B. Williams and G. Dowson (Metal Powder Report Publishing Services, Shrewsbury, UK, 1988) pp. 46–1.

    Google Scholar 

  10. F. Hehmann, “Rasch Erstarrh magnesium Mischkoistalle und ihr Umwandlungs — und korrosionsver-halten”, Fortschoitt — Berichte VDI, Reihe 5, Nr. 155 (VDI-Verlag, Düsseldorf, 1989).

    Google Scholar 

  11. H. Kaiser, in “Korrosion der Metalle” (Advanced Course, edited by H. Kaesche, University of Erlangen, Nürnberg, West Germany, 1984) pp. 4–7.

    Google Scholar 

  12. S. Akavipat, E. B. Hale, C. E. Habermann andP. L. Hagans,Mater. Sci. Engng 69 (1985) 311.

    Google Scholar 

  13. N. D. Tomashov, in “Theory of Corrosion and Protection of Metals” (MacMillan, New York, 1966) p. 493.

    Google Scholar 

  14. B. Mazurkiewicz,Corr. Sci. 23 (1983) 687.

    Google Scholar 

  15. J. I. Gardiazabal andJ. R. Galvele,J. Electrochem. Soc. 127 (1980) 255.

    Google Scholar 

  16. H. Gerischer andH. Rickert,Z. Metallkde 46 (1955) p. 681.

    Google Scholar 

  17. R. P. Tischer andH. Gerischer,Z. Electrochem. 62 (1958) p. 50.

    Google Scholar 

  18. H. Gerischer,Korrosion 14 (1962) 59.

    Google Scholar 

  19. H. Kaiser,Werkstoffe und Korrosion, to be published.

  20. B. Kabius, Thesis, University of Erlangen (1987).

  21. A. J. Forty andG. Rowlands,Phil. Mag. A 43 (1981) 171.

    Google Scholar 

  22. P. Durkin andA. J. Forty,ibid. 45 (1981) 95.

    Google Scholar 

  23. R. C. Weast, in “CRC Handbook of Chemistry and Physics”, 66th Edn (CRC, Florida, 1986) p. 46.

    Google Scholar 

  24. F. H. Wölbier,Diffusion Defect Data 50 (1987) 170.

    Google Scholar 

  25. W. A. Fernando, in Naval Surface Weapons Center Report TR 85-88 (Dahlgren, Virginia, 1985) p. I9.

    Google Scholar 

  26. H. Sugawara andH. Ebiko,Corros. Sci. 7 (1967) 513.

    Google Scholar 

  27. H. Kaiser, “Alloy Dissolution”, in “Corrosion Mechanisms” (Dekker, New York, 1987) p. 85.

    Google Scholar 

  28. H. W. Pickering andC. Wagner,J. Electrochem. Soc. 114 (1967) 698.

    Google Scholar 

  29. A. P. Pchelnikov, L. I. Krasinskaya, A. D. Sitnikov andV. V. Losev,Elektrokhimiya 11 (1975) 37.

    Google Scholar 

  30. H. W. Pickering andP. J. Byrne,J. Electrochem. Soc. 118 (1971) 209.

    Google Scholar 

  31. C. Wagner,ibid. 103 (1956) 571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermann, F., Sommer, F., Jones, H. et al. Corrosion inhibition in magnesium-aluminium-based alloys induced by rapid solidification processing. J Mater Sci 24, 2369–2379 (1989). https://doi.org/10.1007/BF01174498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174498

Keywords

Navigation