Skip to main content
Log in

Debris flow modeling: A review

  • Review Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A debris flow represents a mixture of sediment particles of various sizes and water flowing down a confined, channel-shaped region (e.g., gully, ravine or valley) down to its end, at which point it becomes unconfined and spreads out into a fan-shaped mass. This review begins with a survey of the literature on the physical-mathematical modeling of debris flows. Next, we discuss the basic aspects of their phenomenology, such as dilatancy, internal friction, fluidization, and particle segregation. The basic characterization of a debris flow as a mixture motivates the application of the continuum thermodynamical theory of mixtures to formulate a model for a debris flow as a viscous fluid-granular solid mixture. A major advantage of such a formulation, which goes beyond the most general models in the literature, e.g., Takahashi (1991), is that it can be used to expose and better understand the assumptions underlying existing models, as well as to derive new, more sophisticated models. Finally, we delve into the issue of how such models have been or can be implemented numerically, as well as general boundary conditions for debris flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagnold RA (1954) Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London, A 225: 49–63

    Google Scholar 

  2. Bagnold RA (1962) Auto-suspension of transported sediment: turbidity currents. Proc. R. Soc. London, A 265: 315–319

    Google Scholar 

  3. Bagnold RA (1966) The shearing and dilatation of dry sand and the singing mechanism, Proc. R. Soc. London, A 295: 219–232

    Google Scholar 

  4. Batchelor GK, Green JT (1972) The hydrodynamic interaction of two small freely moving spheres in a linear flow field. J. Fluid Mech. 56: 375

    Google Scholar 

  5. Campbell CS (1990) Rapid granular flows. Ann. Rev. Fluid Mech. 22: 57–92

    Google Scholar 

  6. Chen CL (1987) Comprehensive review of debris flow modeling concepts in Japan. Geol. Soc. Am. Rev. Eng Geol. Vol. VII, pp. 13–29

    Google Scholar 

  7. Coussot P (1994) Steady, laminar, flow of concentrated mud suspensions in open channel. J. Hydr. Res. 32, vol. 4: 535–559

    Google Scholar 

  8. Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik 29: 289

    Google Scholar 

  9. Einstein A (1911) Berichtigung zu ‘Eine neue Bestimmung der Moleküldimensionen’. Annalen der Physik 34: 591

    Google Scholar 

  10. Ehlers W (1993) Constitutive equations for granular materials in geomechanical context. In: Continuum Mechanics in Environmental Sciences and Geophysics (K. Hutter, Ed.), CISM-Lecture Notes 337, Springer-Verlag Wien-New York, pp. 313–402

    Google Scholar 

  11. Gauer P (1994) Bewegung einer Staublawine längs eines Berghanges. Diplomarbeit, Fachbereich Mechanik, TH Darmstadt

    Google Scholar 

  12. Goddard JD (1986) Dissipative materials as constitutive models for granular media. Acta Mechanica 63: 3–13

    Google Scholar 

  13. Goodman MA, Cowin SC (1972) A continuum theory for granular materials. Arch. Rat. Mech. Anal. 44: 249–266

    Google Scholar 

  14. Greve R (1991) Zur Ausbreitung einer Granulatlawine entlang gekrümmter Flächen - Laborexperimente und Modellrechnungen. Diplomarbeit, Fachbereich Physik, Technische Hochschule Darmstadt, Deutschland

    Google Scholar 

  15. Greve R, Hutter K (1993) The motion of a granular avalanche in a convex and concave curved chute: Experimenrts and theoretical predictions. Phil. Trans. R. Soc. London, A 342: 573–604

    Google Scholar 

  16. Greve R, Koch T, Hutter K (1994) Unconfined flow of granular avalanches along a partly curved surface, Part 1: Theory. Proc. R. Soc. London A 445: 399–413

    Google Scholar 

  17. Haeberli W, Rickenmann D, Zimmermann M (1991) Murgänge, Ursachenanalyse der Hochwasser 1987. Mitteilung des Bundesamtes für Wasserwirtschaft Nr. 4 und Mitteilung der Landeshydrologie und -geologic Nr. 14, EDMZ, pp. 77–88

  18. Hungr O (1994) A model for the runout analysis of rapid flow slides. Manuscript for submission to the Canadian Geotechnical Journal, June, 1994

  19. Hutter K (1983) Theoretical Glaciology. Reidel, Dordrecht

    Google Scholar 

  20. Hutter K (1989) A continuum model for finite mass avalanches having shear-flow and plug-flow regime. Internal Report, Federal Institute of Snow and Avalanche Research, Weissfluhjoch, Davos

    Google Scholar 

  21. Hutter K (1991) Two- and three-dimensional evolution of granular avalanche flow-theory and experiments revisited. Acta Mechanica (Supplement), 1: 167–181

    Google Scholar 

  22. Hutter K, Rajagopal KR (1994) On flows of granular materials. Cont. Mech. Thermodyn. 6: 81–139

    Google Scholar 

  23. Hutter K (1996) Avalanche dynamics, a review. In: Hydrology of Disasters (VP Singh, ed.) Kluwer Academic Publishers, Amsterdam. (in press)

    Google Scholar 

  24. Hutter K, Raggio G (1982) A Chrystal model describing gravitational barotropic motion in elongated lakes. Arch. Geophys. Biokl. Set. A 31: 361–378

    Google Scholar 

  25. Hutter K, Szidarovskiy F, Yakowitz S (1986a) Plane steady shear flow of a cohesionless granular material down an inclined plane: A model for flow avalanches, Part I: Theory. Acta Mechanica 63: 87–112

    Google Scholar 

  26. Hutter K, Szidarovskiy F, Yakowitz S (1986b) Plane steady shear flow of a cohesionless granular material down an inclined plane: A model for flow avalanches, Part II: Numerical results. Acta Mechanica 65: 239–261

    Google Scholar 

  27. Hutter K, Nohguchi Y (1990) Similarity solutions for a Voellmy model of snow avalanches with finite mass. Acta Mechanica 82: 99–127

    Google Scholar 

  28. Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Phil. Trans. R. Soc. London, A 334: 93–138

    Google Scholar 

  29. Hutter K, Greve R (1993) Two-dimensional similarity solutions for finite mass granular avalanches with Coulomb and viscous-type frictional resistance. J. Glaciology 39(132): 357–372

    Google Scholar 

  30. Hutter K, Koch T, Plüss C, Savage SB (1995) Dynamics of avalanches of granular materials from initiation to runout. Part II. Laboratory experiments. Acta Mechanica 109: 127–165

    Google Scholar 

  31. Hutter K, Siegel M, Savage SB, Nohguchi Y (1993) Two dimensional spreading of a granular avalanche down an inclined plane. Part 1, Theory. Acta Mechanica 100: 37–68

    Google Scholar 

  32. Hutter K, Jöhnk K, Svendsen B (1994) On interfacial transition conditions in two phase gravity flow. ZAMP 45: 746–762

    Google Scholar 

  33. Iverson RM, Denlinger RP (1987) The physics of debris flows — A conceptual assessment. In: Erosion and Sedimentation in the Pacific Rim (Proceedings of the Corvallis Symposium), IAHS Publ. No. 165: 155-165

  34. Jöhnk K, Hutter K, Svendsen B (1993) Steady-state gravity flow of a binary mixture down an inclined plane. Recent Advances in the Mechanics of Structured Continua. AMD Vol. 160/MD-Vol. 41: 55–63, ASME

    Google Scholar 

  35. Kanatani KI (1979) A micropolar continuum theory for the flow of granular materials. Int. J. Engng. Sci. 17: 419–432

    Google Scholar 

  36. Kantani KI (1980a) A continuum theory for the flow of granular materials. Part I, Theor. Appl. Mech. Vol. 27: 571–578; Part II, Theor. Appl. Mech. Vol. 28: 485–492, Univ. of Tokyo Press

    Google Scholar 

  37. Kantani KI (1980b) A theory for the plastic flow of granular materials. Research Rep., CS-80-4, Dept. Comput. Sci., Gunma Univ., Gunma, Japan

    Google Scholar 

  38. Kantani KI (1980c) An entropy model for shear deformation of granular materials. Lett. Appl. Engng. Sci. Vol. 18: 989

    Google Scholar 

  39. Kantorovich LW, Krylov WI (1958) Approximate methods of higher analysis. Interscience Publishers.

  40. Koch T (1989) Bewegung einer Granulatlawine entlang einer gekrümmten Bahn. Diplomarbeit, Technische Hochschule Darmstadt, 172pp

  41. Koch T (1994) Bewegung einer granularen Lawine auf einer geneigten and gekrümmten Fläche. Entwicklung and Anwendung eines theoretisch numerischen Verfahrens and dessen Überprüfung durch Laborexperimente. Dissertation, Technische Hochschule Darmstadt, 225 pp

  42. Koch T, Greve R, Hutter K (1994) Unconfined flow of granular avalanches along a partly curved surface. Part II: Experiments and numerical computations. Proc. R. Soc. London, A 445: 415–435

    Google Scholar 

  43. Kopper W (1967) Der plastische Grenzzustand in der schiefen Eis- oder Schneeschicht. ZAMP 18: 705–736

    Google Scholar 

  44. Jan CD, Shen HW (1993) A review of debris flow analysis. Proc. XXV IAHR Congress, Technical Session B, Vol. III pp. 25–32

    Google Scholar 

  45. Jenkins JT (1994) Hydraulic theory for a debris flow supported on a collisional shear layer. Proc. Int. Workshop on ‘Floods and Innundations Related to Large Earth Movements’, Trento, Italy, IAHR, A6.1-A.610

    Google Scholar 

  46. Jenkins JT, Cowin SC (1979) Theories for flowing granular materials. The Joint ASME-CSME Appl, Mech. Fluid Engng. and Bioengng. Conf., AMD V. 31: 79–89

    Google Scholar 

  47. Laigle D, Coussot P (1993) Numerical Modeling of debris flow dynamics. Proc. Int. Workshop on ‘Floods and Innundations Related to Large Earth Movements’, Trento, Italy, IAHR, A11.1-A.11.11

    Google Scholar 

  48. MacArthur RC, Schamber DR (1986) Numerical methods for simulating mudflows. Proc. Third Int. Symp. on River Sedimentation, Mississippi, USA, pp. 1615–1623

  49. Middleton GV (1970) Experimental studies related to problem of flysch sedimentation. In: Flysch Sedimentology in North America (Lajoie, J., ed.) Business and Economics Science Ltd., Toronto, 253–272

    Google Scholar 

  50. Middleton GV, Hampton MA (1976) Subaqueous sediment transport and deposition by sediment gravity flows. In: Stanley DJ, Swift DJP (eds.) Marine sediment transport and environmental management (Wiley, New York), 197–218

    Google Scholar 

  51. Monney M (1951) The viscosity of a concentrated suspension of spherical particles. Phil. Mag. xy, 162-170

  52. Montefusco L (1994) A possible 2-D vertical model for debris flow. Proc. Int. Workshop on ‘Floods and Innundations Related to Large Earth Movements’. Trento, Italy, IAHR, A9.1-A.9.9

    Google Scholar 

  53. Mori Y, Ototake N (1956) On viscosity of suspension. J. Chem. Eng. 20: 9

    Google Scholar 

  54. Naylor MA (1980) The origin of inverse grading in muddy debris flow deposits — A review. J. Sedimentary Petrology 50: 1111–1116

    Google Scholar 

  55. Norem H, Irgens F, Schieldrop B (1987) A continuum model for calculating snow avalanches. In: Salm, B. and Gubler, H., (eds.) Avalanche Formation, Movement and Effects (IAHS Publ. No. 126), 363–379

  56. O'Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflows simulation. J. Hydr. Eng., ASCE, Vol. 119, No. 2: 244–261

    Google Scholar 

  57. Parker G (1982) Conditions for the ignition of catastrophically erosive turbidity currents. Mar. Geol. 46: 307–327

    Google Scholar 

  58. Parker G, Fukushima Y, Pantin HM (1986) Self-accelerating turbidity currents. J. Fluid Mech. 171: 145–181

    Google Scholar 

  59. Passman SL, Nunziato JW, Walsh EK (1984) A theory of multiphase mixtures. In: Rational Thermodynamics, C. Truesdell (ed.) Springer-Verlag 1984

  60. Raggio GM (1980) A channel model for a curved elongated homogeneous lake. Mitt. No. 49 der Versuchsanstalt für Wasserbau, Hydrologic und Glaziologie, ETH Zürich

    Google Scholar 

  61. Raggio G, Hutter K (1982) An extended channel model for the prediction of motion in elongated homogeneous lakes. Part I: Theortical introduction. J. Fluid Mech. 121: 231–255

    Google Scholar 

  62. Raggio G, Hutter K (1982) An extended channel model for the prediction of motion in elongated homogeneous lakes. Part II: First order model applied to ideal geometry. Rectangular basins with flat bottom. J. Fluid Mech. 121: 231–255

    Google Scholar 

  63. Raggio G, Hutter K (1982) An extended channel model for the prediction of motion in elongated homogeneous lakes. Part III: Free oscillations in natural basins. J. Fluid Mech. 121: 283–299

    Google Scholar 

  64. Rajagopal KR, Massoudi M (1990) A method for measuring material moduli of granular materials: flow in an orthogonal rheometer. Topical Report U, Department of Energy. DOE/PETC/TR-90/3

  65. Reynolds O (1885) On the dilatancy of media composed of rigid particles in contact. Phil. Mag. Set. 5, 20: 469–481

    Google Scholar 

  66. Sallenger AH (1979) Inverse grading and hydraulic equivalence in grain-flow deposits. J. Sedimentary Petrology 49: 553–562

    Google Scholar 

  67. Savage SB (1979) Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92: 53–96

    Google Scholar 

  68. Savage SB, Lun CKK (1988) Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189: 311–335

    Google Scholar 

  69. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199: 177–215

    Google Scholar 

  70. Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout. Part 1. Analysis. Acta Mech. 86: 201–223

    Google Scholar 

  71. Scheiwiller T, Hutter K (1982) Lawinendynamik: Übersicht über Experimente und theoretische Modelle von Fließ- und Staublawinen. Laboratory of Hydraulics, Hydrology and Glaciology, Report No. 58, ETH Zürich, Switzerland

    Google Scholar 

  72. Scheiwiller T, Hatter K, Hermann F (1987) Dynamics of powder snow avalanches Annales Geophysicae 5B(6): 569–588

    Google Scholar 

  73. Stocker T (1982) Topographic waves. Eigenmodes and reflection in lakes and semi-infinite channels. Mitt. No. 93, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich

    Google Scholar 

  74. Stocker T, Hutter K (1986) One-dimensional models for topographic Rossby waves in elongated basins on the f-plane. J. Fluid Mech. 170: 435–459

    Google Scholar 

  75. Stocker T, Hutter K (1987a) Topographic waves in rectangular basins. J. Fluid Mech. 185: 107–120

    Google Scholar 

  76. Stocker T, Hutter K (1987b) Topographic waves in channels and lakes on the f-plane. Lecture Notes on Coastel and Estuarine Studies, Springer-Verlag, Berlin etc. (available from America Geophysical Union)

    Google Scholar 

  77. Stocker T (1988) A numerical study of topogrpahic wave reflection in semi-infinite channels. J. Phys. Oceanogr. 18, 4: 609–618

    Google Scholar 

  78. Straub S (1995) Schnelles granulates Fließen in subaerischen pyroklastischen Strömen. Dissertation an der Bayerischen Julius-Maximilians-Universität Würzburg

    Google Scholar 

  79. Svendsen B, Hutter K (1995) On the thermodynamics of a mixture of isotropic granular materials. Cont. Mech. Thermodyn. (in press)

  80. Svendsen B, Wu T, Jöhnk K, Hutter K (1995) On the steady-state gravity flow of a two-component mixture down an incline plane. Proc. Roy. Soc. Lond. (in press)

  81. Takahashi T (1981) Debris flow. Ann. Rev. Fluid Mech. 13: 57–77

    Google Scholar 

  82. Takahashi T (1983) Debris flow and debris flow deposition. In: Advances in the Mechanics and Flow of Granular Materials, Vol. II. Shahinpoor M. (ed.) Trans. Tech. Publ. pp. 57–77

  83. Takahashi T (1991) Debris flow. IAHR-AIRH Monograph series. A. A. Balkema

  84. Takahashi T, Nakagawa H, Harada T, Yamashiki Y (1992) Routing debris flows with particle segregation. J. Hydr. Eng., ASCE, Vol. 118, No. 11: 1490–1507

    Google Scholar 

  85. Tesche TW (1986) Sensitivity analysis of the Avalanche simulation model. Alpine Geophysics, Inc., Report No. AGI-86/010, Placeville, California

    Google Scholar 

  86. Tesche TW (1987) A three-dimensional dynamic model of turbulent avalanche flow. Paper presented at the International Snow Sciences Workshop, Lake Tahoe, California, October 22–25, 1986, pp. 111–137

  87. Wieland M (1995) Experimentelle und theoretische Studie einer sich in eine Ebene ausbreitenden Runsenlawine oder eines Bergsturzes. Diplomarbeit Fachbereich Physik, TH Darmstadt

    Google Scholar 

  88. Zwinger T (1995) Dynamisches Verhalten einer Fließlawine an beliebig geformten Berghängen. Diplomarbeit, Fakultät für Physik, TU-Wien

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Reint de Boer upon the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutter, K., Svendsen, B. & Rickenmann, D. Debris flow modeling: A review. Continuum Mech. Thermodyn 8, 1–35 (1994). https://doi.org/10.1007/BF01175749

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01175749

Keywords

Navigation