Skip to main content
Log in

Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This work examines critically the various formulations of the balance of linear momentum innonlinear inhomogeneous elasticity. The corresponding variational formulations are presented. From the point of view of the theory of elastic inhomogeneities, the most interesting formulations are those which, being either completely material or mixed-Eulerian, exhibit explicitly the inhomogeneities in the form ofmaterial forces. They correspond to the balance ofpseudomomentum, a material covector which is seldom used but which we show to play a fundamental role in the Hamiltonian canonical formulation of nonlinear elasticity. The flux associated with pseudomomentum is none other than theEshelby material tensor. Applying this formulation to the case of an elastic body containing a crack of finite extent, the notion of suction force acting at the tip of the crack follows while afracture criterion à la Griffith can be deduced from a variational inequality. Possible extensions to higher-grade elastic materials and inelastic materials are indicated as well as the role played by pseudomomentum in the quantization of elastic vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Truesdell, C. A., Toupin, R. A.: The classical field theories. In: Handbuch der Physik, Vol. III/1 (Flügge, S., ed.), Berlin: Springer 1960.

    Google Scholar 

  2. Deucker, E. A.: Beitrag zur Theorie endlicher Verformungen und zur Stabilitätstheorie des elastischen Körpers. Deutsche Math.5, 546–562 (1940–1941).

    Google Scholar 

  3. Eshelby, J. D.: The force on an elastic, singularity. Phil. Trans. Roy. Soc. Lond.A244, 87–112 (1951).

    Google Scholar 

  4. Eshelby, J. D.: The continuum theory of lattice defects. In: Progress in solid state physics (Seitz, F., Turnbull, D., eds.), Vol. 3, p. 79. New York: Academic Press 1956.

    Google Scholar 

  5. Eshelby, J. D.: The elastic energy-momentum, tensor. J. Elasticity5, 321–335 (1975).

    Google Scholar 

  6. Sanders, J. L.: On the Griffith-Irwin fracture theory. J. Appl. Mech.27, 352–353 (1960).

    Google Scholar 

  7. Cherepanov, G. P.: The propagation of cracks in continuous media. P.M.M. (J. Appl. Math. Mech.)31, 476–488 (1967).

    Google Scholar 

  8. Rice, J. R.: A path-independent integral and the approximate analysis of strain, concentrations by notches and cracks. J. Appl. Mech.35, 379–388 (1968).

    Google Scholar 

  9. Budiansky, B., Rice, J. R.: Conservation laws and energy release rates J. Appl. Mech.40, 201–203 (1973).

    Google Scholar 

  10. Casal, P.: Interpretation of the Rice integral in continuum mechanics. Lett. Appl. Engng. Sci.16, 335–347 (1978).

    Google Scholar 

  11. Gurtin, M. E., Yatomi, C.: On the energy release rate in elastodynamical crack propagation. Arch. Rat. Mech. Anal.74, 231–247 (1980).

    Google Scholar 

  12. Golebiewska-Herrmann, A.: Material momentum tensor and path-independent integrals of fracture mechanics. Int. J. Sol. Struct.18, 319–326 (1982).

    Google Scholar 

  13. Eischen, J. W., Herrmann, G.: Energy release rates and related balance laws in linear defects mechanics. J. Appl. Mech.54, 388–392 (1987).

    Google Scholar 

  14. Nelson, D. F.: Electric, optic and acoustic interactions in dielectrics. New York: Wiley 1979.

    Google Scholar 

  15. Peierls, R.: Momentum and pseudomomentum of light and sound. In: Highlights of condensed-matter physics, LXXXIX Corso, pp. 237–255. Bologna: Soc. Ital. Fisica 1985.

    Google Scholar 

  16. Bui, H. D.: Dualité entre les intégrales indépendantes du contour dans la théorie des solides fissurés. C.R. Acad. Sci. Paris276 A, 1425–1428 (1973).

    Google Scholar 

  17. Bui, H. D.: Mécanique de la rupture fragile. Paris: Masson 1977.

    Google Scholar 

  18. Maugin, G. A.: Thermomechanics of plasticity and fracture. Cambridge: University Press 1991.

    Google Scholar 

  19. Holm, D. D., Kupershmidt, B. A.: Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas and elasticity. Physica6D, 347–363 (1983).

    Google Scholar 

  20. Simo, J. C., Marsden, J. E., Krishnaprasad, P. S.: The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods and plates. Arch. Rat. Mech. Anal.104, 125–183 (1988).

    Google Scholar 

  21. Maugin, G. A.: Sur la conservation de la pseudo-quantité de mouvement en mécanique et électrodynamique des milieux contius. C.R. Acad. Sci. ParisII–311, 763–768 (1990).

    Google Scholar 

  22. Maugin, G. A., Epstein, M.: The electroelastic energy-momentum tensor. Proc. Roy. Soc. Lond. A433, 299–312 (1991).

    Google Scholar 

  23. Eringen, A. C.: Mechanics of continua, 2nd enlarged ed. New York: Krieger 1980.

    Google Scholar 

  24. Maugin, G. A.: Continuum mechanics of electromagnetic solids. Amsterdam: North-Holland 1988.

    Google Scholar 

  25. Maugin, G. A.: The principle of virtual power in continuum mechanics: application to coupled fields. Acta Mech35, 1–70 (1980).

    Google Scholar 

  26. Maugin, G. A.: Nonlinear electromechanical effects and applications. A series of lectures. Singapore: World Scientific 1985.

    Google Scholar 

  27. Ani, W., Maugin, G. A.: Basic equations for shocks in nonlinear electroelastic materials. J. Acoust. Soc. Am.85, 599–610 (1989).

    Google Scholar 

  28. Nelson, D. F.: Resolution of the problem of Minkowski and Abraham. In: Mechanical modelling of new electromagnetic materials (Hsieh, R. K. T., ed.) pp. 171–177. Amsterdam: North-Holland 1990.

    Google Scholar 

  29. Golebiewska-Herrmann, A.: On conservation laws of continuum mechanics. Int. J. Sol. Struct.17, 1–9 (1981).

    Google Scholar 

  30. Ogden, R. W.: Non-linear elastic deformations. Chichester: Ellis Horwood Publ. 1984.

    Google Scholar 

  31. Batra, R. C.: The force on a lattice defect in an elastic body. J. Elasticity17, 3–8 (1987).

    Google Scholar 

  32. Maugin, G. A.: A continuum approach to magnon-phonon couplings — I, II. Int. J. Engng. Sci.17, 1073–1091, 1093–1108, (1979).

    Google Scholar 

  33. Maugin, G. A., Pouget, J.: Electroacoustic equations for one-domain ferroelectric bodies. J. Acoust. Soc. Am.68, 575–587 (1980).

    Google Scholar 

  34. Maugin, G. A.: Magnetized deformable media in general relativity. Ann. Inst. Henri PoincaréA 15, 275–302 (1971).

    Google Scholar 

  35. Edelen, D. G. B.: Aspects of variational arguments in the theory of elasticity: facts and folklore. Int. J. Sol. Struct.17, 729–740 (1981).

    Google Scholar 

  36. Suhubi, E. S.: Conservation laws in nonlinear elastodynamics. Int. J. Engng. Sci.27, 441–453 (1989).

    Google Scholar 

  37. Noether, E.: Invariante Variationsproblem. Kgl. Ges. Wiss. Nachr. Göttingen, Math. Physik. Kl.2, 235 (1918).

    Google Scholar 

  38. Lovelock, D., Rund, H.: Tensors, differential forms and variational principles. New York: Wiley 1975.

    Google Scholar 

  39. Stumpf, H., Le, K. Ch.: Variational principles of nonlinear fracture mechanics. Acta Mech.83, 25–37 (1990).

    Google Scholar 

  40. Epstein, M., Maugin, G. A.: Sur le tenseur de moment matériel d'Eshelby en élasticité non linéaire. C. R. Acad. Sci. ParisII–310, 675–678 (1990).

    Google Scholar 

  41. Epstein, M., Maugin, G. A.: The energy-momentum tensor and material uniformity in finite elasticity. Acta Mech.83, 127–133 (1990).

    Google Scholar 

  42. Griffith, A. A.: The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond.A 221, 163–198 (1921).

    Google Scholar 

  43. Rzewuski, J.: Field theory, vol. 1. Warsaw: P.W.N. 1964.

    Google Scholar 

  44. Podolsky, B., Kikuchi, C.: Phys. Rev.65, 228 (1944).

    Google Scholar 

  45. Truesdell, C. A., Noll, W.: The nonlinear field theory of mechanics. In: Handbuch der Physik, Bd. III/3, (Flügge, S., ed.), Berlin: Springer 1965.

    Google Scholar 

  46. Maugin, G. A., Trimarco, C.: Pseudomomentum and material forces in electromagnetic solids. Int. J. Appl. Electromagnet. Mat. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maugin, G.A., Trimarco, C. Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture. Acta Mechanica 94, 1–28 (1992). https://doi.org/10.1007/BF01177002

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177002

Keywords

Navigation