Skip to main content
Log in

Thermal effects on wave propagation in liquid-filled porous media

Der Einfluß der Temperatur auf die Wellenausbreitung in flüssigkeitsgefüllten porösen Werkstoffen

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Equations are formulated to account for the effects of temperature on the dynamical behavior of two-phase materials typified by liquid-saturated rocks. The constitutive relations reveal the existence of several interesting coupling coefficients, two of which appear to have gone unnoticed heretofore and a third, though noticed, never before measured. Specifically, the first two coefficients are associated with thermal expansion and the third with local heat flow between the phases. Experimental work is reported on the measurement of these quantities for a kerosene-saturated sandstone.

Solutions of the field equations are then studied appropriate to the propagation of plane waves, and it is shown that in an isotropic, “thermoporoelastic” medium there exist, in general, four distinct dilatational motions. Two of these represent modifications of the “fast” and “slow” waves in a two-phase medium at constant temperature, the other two are diffusion-like modes analogous to theT-waves in a single-phase thermoelastic solid.

Finally, for values of material constants corresponding to the kerosene-filled sandstone mentioned above, results of numerical calculations are displayed for the dispersion and attenuation of these waves at seismic frequencies.

Zusammenfassung

Gleichungen zur Berücksichtigung des Temperatureinflusses auf das dynamische Verhalten von zweiphasigen Werkstoffen, wie z. B. durchtränkte Gesteine, werden angegeben. Die Werkstoffgleichungen zeigen das Auftreten verschiedener Kopplungskoeffizienten. Zwei dieser Koeffizienten scheinen unbekannt zu sein, der dritte bekannt, aber bisher noch nie gemessen. Die ersten beiden Koeffizienten stehen in Zusammenhang mit der thermischen Ausdehnung, der dritte mit dem lokalen Wärmefluß zwischen den Phasen. Über die Messung dieser Größen für kerosingefüllten Sandstein wird berichtet.

Die der Ausbreitung ebener Wellen entsprechenden Lösungen der Gleichungen werden untersucht und es wird gezeigt, da\ in einem isotropen “thermoporoelastischen” Körper im allgemeinen vier verschiedene Dilatationsbewegungen auftreten. Zwei entsprechen Modifikationen der “schnellen” und “langsamen” Wellen eines Zweiphasengemisches bei konstanter Temperature, die beiden anderen sind diffusionsähnliche Bewegungsarten entsprechend denT-Wellen eines einphasigen thermoelastischen Festkörpers.

Abschließend werden numerische Ergebnisse für die Dispersion und das Abklingen dieser Wellen bei seismischen Frequenzen für kerosingefüllten Sandstein angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zwikker, C., andC. W. Kosten: Sound Absorbing Materials. Elsevier Publishing Co. 1949.

  2. Scheidegger, A. E.: The Physics of Flow Through Porous Media, Revised ed. University of Toronto Press. 1960.

  3. Biot, M. A.: Theory of Propagation of Elastic waves in a Fluid-Saturated Porous Solid. J. Acoust. Soc. Am.28, 168 (1956).

    Google Scholar 

  4. Paria, G.: Flow of Fluids Through Porous Deformable Solids. Applied Mechanics Surveys, Spartan Books, p. 901, 1966. It should be noted that, contrary to the statement on p. 905, col. 2, of the five references listed in (42) and (43) all but the first do take into account the dissipation terms.

  5. Deresiewicz, H., andB. Wolf: The Effect of Boundaries on Wave Propagation in a Liquid-Filled Porous Solid: VIII. Reflection of Plane Waves at an Irregular Boundary. Bull. Seismol. Soc. Am.54, 1537 (1964).Deresiewicz, H.: The Effect of Boundaries...: IX. Love Waves in a Porous Internal Stratum. Ibid. Bull. Seismol. Soc. Am.55, 919 (1965).Deresiewicz, H., andA. Levy: The Effect of Boundaries...: X. Transmission Through a Stratified Medium. Ibid. Bull. Seismol. Soc. Am.57, 381 (1967).

    Google Scholar 

  6. Biot, M. A.: Generalized Theory of Acoustic Propagation in Porous Dissipative Media. J. Acoust. Soc. Am.34, 1254 (1962).

    Google Scholar 

  7. Zolotarev, P. P.: The Equations of Thermoelasticity for Fluid-Saturated Porous Media. Inzh. Zh.5, 425 (1965); English translation in Engineering Journal.

    Google Scholar 

  8. Luikov, A. V.: Heat and Mass Transfer in Capillary-porous Bodies, chap. 5. Pergamon press. 1966.

  9. Beran, M. J.: Statistical Continuum Theories, chap. 6. Interscience Publishers. 1968.

  10. Truesdell, C., andR. A. Toupin: The Classical Field Theories, in: Encycl. of Physics. Vol. III/1, Sections 158–159, 215, 243, 254–255, 259. (Flügge, S., ed.). Berlin-Göttingen-Heidelberg: Springer. 1960.

    Google Scholar 

  11. Truesdell, C., andW. Noll: The Non-Linear Field Theories of Mechanics, in: Encycl. of Physics. Vol. III/3. Section 130. (Flügge, S., ed.). Berlin-Heidelberg_New York: Springer. 1965.

    Google Scholar 

  12. Bowen, R. M., andD. J. Garcia: On the Thermodynamics of Mixtures with Several Temperatures. Int. J. Engng. Sci.8, 63 (1970).

    Google Scholar 

  13. Craine, R. E., A. E. Green andP. M. Naghdi: A Mixture of Viscous Elastic Materials with Different Constituent Temperatures. Q.J. Mech. Appl. Math.23, 171 (1970).

    Google Scholar 

  14. Rubinshtein, L. I.: On the Question of the Process of Propagation of Heat in Heterogeneous Media (in Russian). Izv. Akad. Nauk SSSR, Ser. Geograph. Geophys.12, 27 (1948).

    Google Scholar 

  15. Deresiewicz, H.: Plane Waves in a Thermoelastic Solid. J. Acoust. Soc. Am.29, 204 (1957).

    Google Scholar 

  16. Fatt, I.: The Biot-Willis Coefficients for a Sandstone. J. Appl. Mech.26, 296 (1959).

    Google Scholar 

  17. Biot, M. A., andD. G. Willis: The Elastic Coefficients of the Theory of Consolidation. J. Appl. Mech.24, 594 (1957).

    Google Scholar 

  18. Deresiewicz, H., andJ. T. Rice: The Effect of Boundaries on Wave Propagation in a Liquid-Filled Porous Solid: III. Reflection of Plane Waves at a Free Plane Boundary (General Case). Bull. Seismol. Soc. Am.52, 595 (1962).

    Google Scholar 

  19. McAdams, W. H.: Heat Transmission, 3rd ed. McGraw-Hill. 1954.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pecker, C., Deresiewicz, H. Thermal effects on wave propagation in liquid-filled porous media. Acta Mechanica 16, 45–64 (1973). https://doi.org/10.1007/BF01177125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177125

Keywords

Navigation