Skip to main content
Log in

Tensile mechanical behaviour of quenched and annealed isotactic polypropylene films over a wide range of strain rates

Part II Relationship with microstructure

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile mechanical behaviour of quenched and annealed isotactic polypropylene (iPP) films has been analysed over a wide range of strain rates, i.e. from 10−3 to 3×10+2s−1. Evolution of mechanical properties of such films versus strain rate has been analysed through the microstructure. Thus, both the Young's modulus and the yield stress could be mainly controlled not only by the crystallinity ratio but also by the physical cross-linking degree of the amorphous phase induced by crystalline entities. For a given crystallinity ratio, the drawability of quenched and annealed iPP films is mainly controlled by the sum of the effects induced by both the physical cross-linking degree of the amorphous phase and the perfection degree of the crystalline phase. The increase in annealing temperature leads to the opposite evolution of these two microstructural parameters and then to opposite effects on the drawability of films. Changes in original microstructure of quenched films induced by drawing at various draw ratios and at various strain rates are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. CEBE, S. Y. CHUNG and S. D. HONG,J.Appl. Polym. Sci. 33 (1987) 487.

    Article  Google Scholar 

  2. A. A. OGALE and R. L. McCULLOUGH,Compos. Sci. Technol. 30 (1987) 185.

    Article  Google Scholar 

  3. J. R. LLOYD, A. A. GOODWIN and J. N. HAY,Br. Polym. Sci. 23 (1990) 101.

    Google Scholar 

  4. R. J. ROLANDO, W. L. KRUEGER and H. W. MORRIS,Plastics Rubber Proc. Appl. 11 (1989) 135.

    Google Scholar 

  5. J. N. CHU, J. M. SCHULTZ,J. Mater. Sci. 24 (1989) 4538.

    Article  Google Scholar 

  6. F. De CANDIA, R. RUSSO and V. VITTORIA,J. Appl. Polym. Sci. 34 (1987) 689.

    Article  Google Scholar 

  7. P. Y. JAR and H. H. KAUSCH,J. Polym. Sci. B Polym. Phys. 30 (1992) 775.

    Article  Google Scholar 

  8. A. ARZAK, J. Y. EGUIAZABAL and J. NAZABAL,Polym. Eng. Sci. 31 (1991) 586.

    Article  Google Scholar 

  9. P. J. HENDRA, J. VILE, H. A. WILIS, V. ZICHY and M. E. A. CUDBY,Polymer 25 (1984) 785.

    Article  Google Scholar 

  10. A. FICHERA and R. ZANNETTI.Makromol. Chem. 176 (1975) 1885.

    Article  Google Scholar 

  11. J. N. HAY, D. J. KEMMISH, J. I. LANGFORD and A. I. M. RAE,Polym. Commun. 25 (1984) 175.

    Google Scholar 

  12. L. C. E. STRUIK,Polymer 28 (1987) 1521.

    Article  Google Scholar 

  13. Idem, ibid. 28 (1987) 1534.

    Article  Google Scholar 

  14. T. E. ATTWOOD, P. C. DAWSON, J. L. FREEMAN, L. R. J. HOY, J. B. ROSS and P. A. STANILAND,ibid. 22 (1981) 1096.

    Google Scholar 

  15. M. T. BISHOP, F. E. KARASZ, P. S. RUSSO and K. H. LANGLEY,Macromolecules 18 (1985) 86.

    Article  Google Scholar 

  16. T. SASUGA and M. HAGIWARA,Polymer 26 (1985) 501.

    Article  Google Scholar 

  17. N. BROWN and I. M. WARD,J. Mater. Sci. 18 (1983) 1405.

    Article  Google Scholar 

  18. G. CAPPACIO and I. M. WARD,Polymer 15 (1974) 233.

    Google Scholar 

  19. R. J. ROLANDO, D. L. KRUEGER and H. W. MORRI,Polym. Mater. Sci. Eng. 52 (1985) 76.

    Google Scholar 

  20. J. A. ROETLING,Polymer 7 (1966) 303.

    Article  Google Scholar 

  21. B. HARTMAN, G. F. LEE and W. WONG,Polym. Eng. Sci. 27 (1987) 823.

    Article  Google Scholar 

  22. J. A. ROETLING,Polym. Lond. 6 (1965) 311.

    Google Scholar 

  23. P. BEGUELIN, M. BARBEZAT and H. H. KAUSCH,J. Phys. (III) 1 (1991) 1867.

    Google Scholar 

  24. J. M. MURACCIOLE and Y. A. BERTIN,ibid. (III) 1 (1991) 1881.

    Google Scholar 

  25. R. E. J. ROBERTSON,J. Appl. Polym. Sci. 7 (1963) 443.

    Google Scholar 

  26. S. WU,Ibid. 46 (1992) 619.

    Google Scholar 

  27. T. REE and H. EYRING,J. Appl. Phys. 26 (1955) 793.

    Article  Google Scholar 

  28. J. D. FERRY “Viscoelastic properties of polymers” (Wiley, New York, 1970).

    Google Scholar 

  29. B. Z. JANG, D. R. UHLMANN and J. B. VANDER SANDE,Polym. Eng. Sci. 25 (1985) 98.

    Article  Google Scholar 

  30. H. G. OLF and A. PETERLIN,J. Polym. Sci. 12 (1974) 2209.

    Google Scholar 

  31. A. PETERLIN,ibid. C9 (1965) 61.

    Google Scholar 

  32. Idem, Kolloid Z. Z. Polym. 233 (1968) 857.

    Article  Google Scholar 

  33. N. ALBEROLA and J. PEREZ,J. Mater. Sci. 26 (1991) 2921.

    Article  Google Scholar 

  34. G. SHI,Makromol. Chem. 190 (1989) 907.

    Article  Google Scholar 

  35. R. F. SARAF and R. PORTER,Polym. Eng. Sci. 28 (1989) 842.

    Article  Google Scholar 

  36. T. LIU and I. R. HARRISON,Polymer 28 (1987) 1860.

    Article  Google Scholar 

  37. A. MARQUEZ-LUCERO, C. G'SELL and K. W. NEALE,ibid. 30 (1989) 636.

    Article  Google Scholar 

  38. A. PETERLIN,J. Mater. Sci. 6 (1971) 490.

    Article  Google Scholar 

  39. N. ALBERORA, M. FUGIER, D. PETIT and B. FILLON,J. Mater. Sci. 30 (1995) 0000.

    Google Scholar 

  40. I. M. WARD, “Mechanical properties of solid polymers”,2nd Edn (Wiley, New York, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberola, N., Fugier, M., Petit, D. et al. Tensile mechanical behaviour of quenched and annealed isotactic polypropylene films over a wide range of strain rates. J Mater Sci 30, 860–868 (1995). https://doi.org/10.1007/BF01178418

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178418

Keywords

Navigation