Skip to main content
Log in

Integrated optimal structural and vibration control design

  • Research Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

An integrated design procedure which is composed of structural design, control design, and actuator locations design is proposed in this paper. First, a composite objective function, formed by a structural and a control objective, is optimized in steady state through the homogenization design method. Then an independent modal space control algorithm (IMSC) is performed on this optimal structure to reduce the dynamic response. Finally, to minimize the control force while still obtaining the same modal response for the controlled modes, the optimal choice for actuator locations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balas, M.J. 1978: Feedback control of flexible systems.IEEE Trans. Auto. Control Vol. AC23, 673–679

    Google Scholar 

  • Balas, M.J. 1979: Direct velocity feedback control of large space structures.J. Guid., Control & Dyn. 2, 252–253

    Google Scholar 

  • Baruh, H.; Meirovitch, L. 1981: On the placement of actuators in the control of distributed-parameter systems.AIAA/ASME/ASCE/AHS, 22nd Structures, Structural Dynamics and Materials Conf., pp. 611–620

  • Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using homogenization method.Comp. Meth. Appl. Mech. Engrg. 71, 197–224

    Google Scholar 

  • Bendsøe, M.P.; Rodrigues, H.C. 1991: Integrated topology and boundary shape optimization of 2-D solids.Comp. Appl. Mech. Engrg. 87, 15–34

    Google Scholar 

  • Díaz, A.R.; Kikuchi, N. 1992: Solution to shape and topology eigenvalue optimization problems using homogenization method.Int. J. Num. Meth. Engrg. 35, 1487–1502

    Google Scholar 

  • Hale, A.L.; Lisowiki, R.J.; Dahl, W.E. 1985: Optimal simultaneous structural and control design of maneuvering flexible spacecraft.J. Guid., Control & Dyn. 8, 86–93

    Google Scholar 

  • Johnson, T.L. 1981: Principles of sensor and actuator location in distributed systems.Proc. Int. Symp. on Engineering Science and Mechanics, Tainan, Taiwan,50, pp. 1–14

  • Kajiwara, I.; Tsujioka, K.; Nagamatsu, A. 1994: Approach for simultaneous optimization of a structure and control system.AIAA J. 32, 866–873

    Google Scholar 

  • Kamat, M.P.; Venkayya, V.B.; Khot, N.S. 1983: Optimization with frequency constraints limitations.J. Sound & Vib. 91, 147–154

    Google Scholar 

  • Lindberg, R.E.; Longman, R.W. 1984: On the number and placement of actuators for independent modal space control.J. Guid., Control & Dyn. 7, 215–221

    Google Scholar 

  • Martin, J.C.E. 1978: Optimal allocation of actuators for distributed-parameter system.ASME J. Dyn. Systems, Measurement and Control 100, 227–228

    Google Scholar 

  • Meirovitch, L.; Baruh, H. 1980: Control of self-adjoint distributed-parameter systems.J. Guid., Control & Dyn. 5, 60–66

    Google Scholar 

  • Miller, D.F.; Shim, J. 1987: Gradient-based combined structural and control optimization.J. Guid., Control & Dyn. 10, 291–298

    Google Scholar 

  • Ou, J.-S.; Kikuchi, N. 1996: Optimal design of controlled structures.Struct. Optim. 11, 19–28

    Google Scholar 

  • Phillips, C.L.; Harbor, R.D. 1987:Feedback control systems. Prentice Hall

  • Rofooei, F.R.; Tadjbakhsh, I.G. 1993: Optimal control of structures with acceleration, velocity, and displacement feedback.J. Eng. Mech. 119, 1993–2011

    Google Scholar 

  • Rozvany, G.I.N.; Zhou, M. 1991: The COC algorithm. Part I: cross-section optimization or sizing; Part II: topological, geometrical and generalized shape optimization.Comp. Meth. Appl. Mech. Engrg. 89, 281–336

    Google Scholar 

  • Rozvany, G.I.N.; Zhou, M. 1992: Extensions of new discretized optimality criteria to structures with passive control.Proc. 4th AIAA/USAF/NASA/OAI Symp. on Multidisciplinary Analysis and Optimization (held in Cleveland, OH), pp. 288–297. Washington D.C.: AIAA

    Google Scholar 

  • Soong, T.T. 1990:Active structural control: theory and practice. New York: Wiley

    Google Scholar 

  • Suzuki, K.; Kikuchi, N. 1991: A homogenization method for shape and topology optimization.Comp. Meth. Appl. Mech. Engrg. 93, 291–318

    Google Scholar 

  • Venkayya, V.B.; Tichler, V.A. 1985: Frequency control and its effect on the dynamic response of flexible structures.AIAA J. 23, 1768–1774

    Google Scholar 

  • Yang, J.N.; Akbarpour, A.; Ghaemmagham, P. 1987: New optimal control algorithms for structural control.ASCE J. Eng. Mech. 113, 1369–1386

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this paper was presented in the First World Congress of Structural and Multidisciplinary Optimization (held in Goslar, Germany, May 28–June 2, 1995).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou, J.S., Kikuchi, N. Integrated optimal structural and vibration control design. Structural Optimization 12, 209–216 (1996). https://doi.org/10.1007/BF01197358

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197358

Keywords

Navigation