Skip to main content
Log in

Nonlinear stochastic effects of substitution — an evolutionary approach

  • Published:
Journal of Evolutionary Economics Aims and scope Submit manuscript

Abstract

Technological innovations have been investigated by means of substitution and diffusion as well as evolution models, each of them dealing with different aspects of the innovation problem. In this paper we follow the well known research traditions on self-organisation models of complex systems. For the first time in the literature we show the existence of a specific niche effect, which may occur in the first stage of establishment of a new technology. Using a stochastic Master equation approach, we obtain analytical expressions for the survival probabilities of a new technology in smaller or larger ensembles. As a main result we demonstrate how a hyperselection situation might be removed in a stochastic picture and thresholds against the prevailing of a new technology in a step-by-step process can be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alchian A (1950) Uncertainty, Evolution and Economic Theory. J Political Econ 58: 211–221

    Google Scholar 

  • Allen PM (1975) Darwinian Evolution and a Predator-Prey Ecology. Bull Math Biol 37: 389–405

    Google Scholar 

  • Allen PM (1976) Evolution, Population Dynamics, and Stability. Proc National Academy of Sciences of the USA 73: 665–668

    Google Scholar 

  • Allen PM, Ebeling W (1983) Evolution and the Stochastic Description of Simple Ecosystems. BioSystems 16: 113–126

    Google Scholar 

  • Allen PM (ed) (1986) Management and Modelling of Dynamic Systems. Eur J Oper Research 25: 1

  • Allen PM, Clark N, Perez-Trejo F (1992) Strategic Planning of Complex Economic Systems. Rev Political Econ 4: 275

    Google Scholar 

  • Arthur BW (1989) Competing Technologies, Increasing Returns, and Look-In by Historical Events. Economic J 99: 116

    Google Scholar 

  • Ayres RU (1991) Evolutionary Economics and Environmental Imperatives. Structural Change Econ Dynamics 2: 255

    Google Scholar 

  • Bartholomay AF (1958) On the Linear Birth and Death Processes of Biology as Markoff Chains. Bull Math Biophysics 20: 97–118

    Google Scholar 

  • Bartholomay AF (1958) Stochastic Models for Chemical Reactions. I. Theory of the Unimolecular Process. Bull Math Biophysics 20: 175–190

    Google Scholar 

  • Bartholomay AF (1959) Stochastic Models for Chemical Reactions. II. The Unimolecular Rate Constant. Bull Math Biophysics 21: 363–373

    Google Scholar 

  • Batten D (1982) On the Dynamics of Industrial Evolution. Regional Sci Urban Econ 12: 449–462

    Google Scholar 

  • Bhargava SC (1989) Generalized Lotka-Volterra Equations and the Mechanism of Technological Substitution. Technol Forecasting Social Change 35: 319–326

    Google Scholar 

  • Bruckner E, Ebeling W, Scharnhorst A (1989) Stochastic Dynamics of Instabilities in Evolutionary Systems. System Dynamics Rev 5: 176–191

    Google Scholar 

  • Bruckner E, Ebeling W, Scharnhorst A (1990) The Application of Evolutionary Models in Scientometrics. Scientometrics 18: 21–41

    Google Scholar 

  • Dosi G, Freeman C, Nelson R, Silverberg G (eds) (1988) Technological Change and Economical Theory. Francis Pinter, London

    Google Scholar 

  • Dosi G, Kaniovski Yu (1993) The Method of Generalized Urn Scheme in the Analysis of Technological and Economic Dynamics. IIASA Working Paper WP-93-17

  • Easingwood C, Mahajan V, Muller E (1981) A nonsymmetric Responding Logistic Model for Forecasting Technological Substitution. Technol Forecasting Social Change 20: 199–213

    Google Scholar 

  • Ebeling W, Feistel R (1982) Physik der Selbstorganisation und Evolution. Akademie-Verlag, Berlin

    Google Scholar 

  • Ebeling W, Sonntag I, Schimansky-Geier L (1981) On the Evolution of Biological Macromolecules. II. Catalytic networks. Studia Biophysica 84: 87

    Google Scholar 

  • Eigen M (1971) The Self-organization of Matter and the Evolution of Biological Macromolecules. Naturwissenschaften 58: 465

    PubMed  Google Scholar 

  • Eigen M, Schuster P (1977, 1978) The Hypercycle. Naturwissenschaften 64: 541–565, 65: 341

    PubMed  Google Scholar 

  • Feistel R, Ebeling W (1976) Dynamische Modelle zum Selektionsverhalten offener Systeme. Wisse Z Wilhelm-Pieck-Universität Rostock 25: 507–513

    Google Scholar 

  • Fisher JC, Pry RH (1971) A Simple Substitution Model of Technological Change. Technol Forecasting Social Change 3: 75–88

    Google Scholar 

  • Haken H (1983) Advanced Synergetics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hofbauer J, Sigmund K (1984) Evolutionstheorie und dynamische Systeme. Paul Parey, Hamburg

    Google Scholar 

  • Jiménez Montaño MA, Ebeling W (1980) A Stochastic Evolutionary Model of Technological Change. Collective Phenomena 3: 107–114

    Google Scholar 

  • Karmeshu, Bhargava SC, Jain VP (1985) A Rationale For Law of Technological Substitution. Regional Sci Urban Econ 15: 137–141

    Google Scholar 

  • Kwasnicka H, Galar R, Kwasnicki W (1983) Technological Substitution Forecasting with a Model Based on Biological Analogy. Technol Forecasting Social Change 23: 41–53

    Google Scholar 

  • Mahajan V, Peterson RA (1979) First-Purchase Diffusion Models of New-Product Acceptance. Technol Forecasting Social Change 15: 127–146

    Google Scholar 

  • Mosekilde E, Aracil J, Allen PM (1988) Instabilities and Chaos in Non-linear Dynamical Systems. System Dynamics Rev 4: 14–55

    Google Scholar 

  • Nelson R, Winter SG, Schuette H (1976) Technical Change in an Evolutionary Model. Q J Econ 90: 90

    Google Scholar 

  • Nelson R, Winter SG (1982) An Evolutionary Theory of Economic Change. The Belknap Press of Harvard University Press, Cambridge, Mass, London

    Google Scholar 

  • Nicolis G, Prigogine I (1987) Die Erforschung des Komplexen: auf dem Weg zu einem neuen Verständnis der Naturwissenschaft. Piper, München Zürich

    Google Scholar 

  • Prigogine I, Nicolis G, Babloyantz A (1972) Thermodynamics and Evolution. Physics Today 25: 38

    Google Scholar 

  • Saviotti PP, Mani GS (1993) A Model of Technological Evolution Based on Replicator Dynamics. International Conference on New Developments in Technology Studies: Evolutionary Economics and Chaos Theory. Amsterdam

  • Saviotti PP, Metcalfe JS (eds) (1991) Evolutionary Theories of Economic and Technological Change. Harwood Academic, Chur

    Google Scholar 

  • Schimansky-Geier L (1980) Stochastische Theorie der Nichtgleichgewichtsphasenübergänge in einkomponentigen bistabilen chemischen Reaktionssystemen. Dissertation, Humboldt-Universität, Berlin

    Google Scholar 

  • Schumpeter JA (1912) Theorie der wirtschaftlichen Entwicklung. Duncker-Humblot, Leipzig

    Google Scholar 

  • Sharif MN, Kabir CA (1976) Generalized Model for Forecasting Technological Substitution. Technol Forecasting Social Change 8: 353–364

    Google Scholar 

  • Silverberg G (1984) Embodied Technical Progress in a Dynamic Economic Model: The Self-Organization Paradigm. In: Goodwin RM et al. (Eds.) Non-linear Models of Fluctuating Growth. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Silverberg G (1992) On the Complex Dynamics of Technical Change and Economic Evolution. J Scientific Industrial Res 51: 151–156

    Google Scholar 

  • Tingyan X (1990) A Combined Growth Model for Trend Forecasting. Technol Forecasting Social Change 38: 175–186

    Google Scholar 

  • Troitzsch KG (1993) Evolution of Production Processes. In: Haag G, Troitzsch KG (eds) Economic Evolution and Demographic Change. Springer, Berlin Heidelberg New York, pp 96–112

    Google Scholar 

  • Weidlich W, Haag G (1983) Concepts and Models in Quantitative Sociology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Weidlich W, Braun M (1992) The Master Equation Approach to Nonlinear Economics. J Evol Econ 2: 233–265

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruckner, E., Ebeling, W., Montaño, M.A.J. et al. Nonlinear stochastic effects of substitution — an evolutionary approach. J Evol Econ 6, 1–30 (1996). https://doi.org/10.1007/BF01202370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202370

Key words

JEL-classification

Navigation