Skip to main content
Log in

Feedback linearization and driftless systems

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

The problem of dynamic feedback linearization is recast using the notion of dynamic immersion. We investigate here a “generic” property which holds at every point of a dense open subset, but may fail at some points of interest, such as equilibrium points. Linearizable systems are then systems that can be immersed into linear controllable ones. This setting is used to study the linearization of driftless systems: a geometric sufficient condition in terms of Lie brackets is given; this condition is also shown to be necessary when the number of inputs equals two. Though noninvertible feedbacks are nota priori excluded, it turns out that linearizable driftless systems with two inputs can be linearized using only invertible feedbacks, and can also be put into a chained form by (invertible) static feedback. Most of the developments are done within the framework of differential forms and Pfaffian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham, J. E. Marsden, and T. Ratiu,Manifolds, Tensor Analysis, and Applications, 2nd edn., Springer-Verlag, New York, 1988.

    Google Scholar 

  2. R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths,Exterior Differential Systems, Springer-Verlag, New York, 1991.

    Google Scholar 

  3. C. Caratheodory, Untersuchungen über die Grundlagen der Thermodynamik,Math. Ann.,67 (1909), 355–386.

    Google Scholar 

  4. E. Cartan, Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courves,Bull. Soc. Math. France,42 (1914), 12–48. Also inOeuvres Complètes, part II, vol. 2, CNRS, Paris, 1984, pp. 1133–1168.

    Google Scholar 

  5. E. Cartan, Sur l'intégration de certains systèmes indéterminés d'équations différentielles,J. Reine Angew. Math.,145 (1915), 86–91. Also inOeuvres Complètes, part II, vol. 2, CNRS, Paris, 1984, pp. 1164–1174.

    Google Scholar 

  6. B. Charlet, J. Lévine, and R. Marino, On dynamic feedback linearization,Systems Control Lett.,13 (1989), 143–151.

    Google Scholar 

  7. W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung,Math. Ann.,177 (1940), 98–105.

    Google Scholar 

  8. M. D. Di Benedetto, J. W. Grizzle, and C. H. Moog, Rank invariants of nonlinear systems,SIAM J. Control Optim.,27 (1989), 658–672.

    Google Scholar 

  9. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon, Sur les systèmes non linéaires différentiellement plats,C. R. Acad. Sci. Paris Sér. I,315 (1992), 619–624.

    Google Scholar 

  10. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon, Flatness and defect of nonlinear systems: introductory theory and examples,Internat. J. Control (1955), to appear.

  11. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon, Towards a new differential geometric setting in nonlinear control,Proc. Internat. Geom. Colloq., Moscow, 1993 World Scientific, Singapore, to appear.

    Google Scholar 

  12. B. Gardner and W. F. Shadwick, Feedback equivalence for general control systems,Systems Control Lett,15 (1990), 15–23.

    Google Scholar 

  13. B. Gardner and W. F. Shadwick, Symmetry and the implementation of feedback linearization,Systems Control Lett.,15 (1990), 25–33.

    Google Scholar 

  14. B. Gardner and W. F. Shadwick, The GS algorithm for exact linearization to Brunovsky normal form,IEEE Trans. Automat. Control,37 (1992), 224–230.

    Google Scholar 

  15. A. Giaro, A. Kumpera, and C. Ruiz, Sur la lecture d'un résultat d'Élie Cartan,C. R. Acad. Sci. Paris Sér. A,287 (1978), 241–244.

    Google Scholar 

  16. R. Hermann, Some remarks on the geometry of systems, inGeometric Methods in Systems Theory (D. Q. Mayne and R. W. Brockett, eds.), Reidel, Dordrecht, 1973, pp. 237–242.

    Google Scholar 

  17. D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen,Math. Ann. 73 (1912), 95–108. Also inGesammelte Abhandlungen, vol. III, Chelsea, New York, 1965, pp. 81–93.

    Google Scholar 

  18. L. R. Hunt, R. Su, and G. Meyer, Global transformations of nonlinear systems,IEEE Trans. Automat. Control,28 (1983), 24–31.

    Google Scholar 

  19. A. Isidori, Control of nonlinear systems via dynamic state feedback, inAlgebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht, 1986.

    Google Scholar 

  20. A. Isidori, C. H. Moog, and A. De Luca, A sufficient condition for full linearization via dynamic state feedback,Proc. 25th IEEE Conf. Decision and Control, 1986, pp. 203–208.

  21. B. Jakubczyk, Remarks on equivalence and linearization of nonlinear systems,Proc. IFAC Symp. NOLCOS '92, Bordeaux, 1992, pp. 393–397.

  22. B. Jakubczyk, Invariants of dynamic feedback and free systems,Proc. ECC '93, Groningen, 1993, pp. 1510–1513.

  23. B. Jakubczyk and W. Respondek, On linearization of control systems,Bull. Acad. Polon. Sci. Sér. Sci. Math.,28 (1980), 517–522.

    Google Scholar 

  24. A. Kumpera and C. Ruiz, Sur l'équivalence locale des systèmes de Pfaff en drapeau,Monge-Ampère Equations and Related Topics. Proc. Sem., Firenze, 1980 (F. Gherardelli, ed.), Inst. Naz. di Alta. Math., 1982, pp. 201–248.

  25. J. P. Laumond and T. Siméon, Motion planning for a two degrees of freedom mobile with towing,Proc. IEEE Internat: Conf. Control and Applications, 1989.

  26. Ph. Martin, Contribution à l'étude des systèmes diffèrentiellement plats, Ph.D. thesis, École des Mines de Paris, 1992.

  27. Ph. Martin, Endogenous feedbacks and equivalence,Proc. MTNS 93, Regensburg, August 1993.

  28. Ph. Martin and P. Rouchon, Systems without drift and flatness,Proc. MTNS 93, Regensburg, August 1993.

  29. Ph. Martin and P. Rouchon, Any (controllable) driftless system with 3 inputs and 5 states is flat,Systems Control Lett., to appear.

  30. R. M. Murray, Nilpotent Bases for a Class of Non-Integrable Distributions with Applications to Trajectory Generation for Nonholonomic Systems, Tech. Report CIT-CDS 92-002, Control and Dynamical Systems, California Institute of Technology, 1992.

  31. R. M. Murray and S. S. Sastry, Nonholonomic motion planning: steering using sinusoids,IEEE Trans. Automat. Control,38 (1993), 700–716.

    Google Scholar 

  32. M. van Nieuwstadt, M. Rathinam, and R. M, Murráy, Differential Flatness and Absolute Equivalence, Tech. Report CIT-CDS 94-006, Control and Dynamical Systems, California Institute of Technology, March 1994.

  33. J. B. Pomet, C. Moog, and E. Aranda, A non-exact Brunovsky form and dynamic feedback linearization,Proc. 31st IEEE Conf. Decision and Control, 1992, pp. 2012–2017.

  34. P. K. Rashevsky, Any two points of a totally nonholonomic space may be connected by an admissible line,Uchen. Zap Ped. Inst. im. Liebknechta. Ser. Phys. Math.,2 (1938), 83–94 (in Russian).

    Google Scholar 

  35. P. Rouchon, Necessary condition and genericity of dynamic feedback linearization,J. Math. Systems Estim. Control,4(2) (1994).

  36. P. Rouchon, M. Fliess, J. Lévine, and Ph. Martin, Flatness, motion planning and trailer systems,Proc. 32nd IEEE Conf. Decision and Control, San Antonio, December 1993, pp. 2700–2705.

  37. W. F. Shadwick, Absolute equivalence and dynamic feedback linearization,Systems Control Lett.,15 (1990), 35–39.

    Google Scholar 

  38. W. M. Sluis, Absolute Equivalence and Its Application to Control Theory, Ph.D. thesis, University of Waterloo, Ontario, 1992.

    Google Scholar 

  39. D. Tilbury, R. Murray, and S. Sastry, Trajectory Generation for then-Trailer Problem Using Goursat Normal Form, Tech. Report UCB/ERL M93/12, Electronics Research Laboratory, University of California at Berkeley, February 1993.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by INRIA, NSF Grant ECS-9203491, GR “Automatique” (CNRS), and DRED (Ministère de l'Éducation Nationale). Part of it was done while the first author was visiting the Center for Control Engineering and Computation, University of California at Santa Barbara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, P., Rouchon, P. Feedback linearization and driftless systems. Math. Control Signal Systems 7, 235–254 (1994). https://doi.org/10.1007/BF01212271

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212271

Key words

Navigation