Skip to main content
Log in

Influence of large deflections on the dynamic stability of nonlinear viscoelastic plates

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The dynamic stability analysis of nonlinear viscoelastic plates is presented. The problem is formulated within the large deflections theory for isotropic plates, and the Leaderman representation of nonlinear viscoelasticity for the material behavior. The influence of the various parameters on the stability/instability possible situation is investigated within the concept of the Lyapunov exponents. In addition, it is shown that in some cases the system has a chaotic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolotin, V. V.: The dynamic stability of elastic systems. San Francisco: Holden Day 1964.

    Google Scholar 

  2. Evan-Iwanowski, R. M.: On the parametric response of structures. Appl. Mech. Rev.18, 699–702 (1965).

    Google Scholar 

  3. Evan-Iwanowski, R. M.: Resonant oscillations in mechanical systems. Amsterdam: Elsevier 1976.

    Google Scholar 

  4. Timoshenko, S.: Theory of elastic stability. New York: McGraw-Hill 1936.

    Google Scholar 

  5. Timoshenko, S.: Theory of plates and shells. New York: McGraw-Hill 1940.

    Google Scholar 

  6. Chia, C. Y.: Nonlinear analysis of plates. New York: McGraw-Hill 1980.

    Google Scholar 

  7. Matyash, V. I.: Dynamic stability of hinged viscoelastic bar. Mech. Poly.2, 293–300 (1964).

    Google Scholar 

  8. Stevens, K. K.: On the parametric excitation of a viscoelastic column. AIAA J.12, 2111–2116 (1966).

    Google Scholar 

  9. Szyskowski, W., Gluckner, P. G.: The stability of viscoelastic perfect columns: a dynamic approach. Int. J. Solids Struct.6, 545–559 (1985).

    Google Scholar 

  10. Gluckner, P. G., Szyskowski, W.: On the stability of column made of time dependent materials. Encyc. Civ. Eng. Prac. Technomic23, 577–626 (1987).

    Google Scholar 

  11. Aboudi, J., Cederbaum, G., Elishakoff, I.: Stability of viscoelastic plates by Lyapunov exponents. J. Sound. Vibr.139, 459–468 (1990).

    Google Scholar 

  12. Cederbaum, G., Aboudi, J., Elishakoff, I.: Dynamic stability of viscoelastic composite plates via the Lyapunov exponents. Int. J. Solids Struct.28, 317–327 (1991).

    Google Scholar 

  13. Smart, J., Williams, J. G.: A comparison of single integral non-linear viscoelasticity theories. J. Mech. Phys. Solids20, 313–324 (1972).

    Google Scholar 

  14. Leaderman, H.: Large longitudinal retareded elastic deformation of rubberlike network polymers. Polymer. Trans. Soc. Rheol.6, 361–382 (1962).

    Google Scholar 

  15. Schapery, R. A.: On the characterization of nonlinear viscoelastic materials. Polymer Eng. Sci.9, 295 (1969)

    Google Scholar 

  16. Bernstein, B., Kearsley, E. A., Zapas, L. J.: A study of stress relaxation with finite strain. Trans. Soc. Rheol.2, 391–410 (1963).

    Google Scholar 

  17. Zapas, L. J., Craft, T.: Correlation of large longitudinal deflections with different strain histories. J. Res. Nat. Bur. Stan. Phy. Che.69 A, 541–546 (1965).

    Google Scholar 

  18. Touati, D., Cederbaum, G.: Dynamic stability of nonlinear viscoelastic plates. Int. J. Solids Struct.31, 2367–2376 (1994).

    Google Scholar 

  19. Nayfeh, A. H., Mook, D. T.: Nonlinear oscillations, New York: Wiley 1979.

    Google Scholar 

  20. Hahn, W.: Stability of motion. Berlin Heidelberg New York: Springer 1967.

    Google Scholar 

  21. Chetaev, N. G.: On certain questions related to the problem of stability of unsteady motion. Prikl. Matem. Mekh.24, 5–22 (1960).

    Google Scholar 

  22. Chetaev, N. G.: Stability of motion. Oxford: Pergamon Press 1961.

    Google Scholar 

  23. Goldhirsch, I., Sulem, P. L., Orszag, S. A.: Stability and Lyapunov stability of dynamical systems: differential approach and numerical method. Physica27 D, 311–337 (1987).

    Google Scholar 

  24. Matlab for Unix Computers. U.S.A.: Math Works Inc. 1991.

  25. McLachlan, N. W.: Theory and application of Mathieu functions. New York: Dover 1964.

    Google Scholar 

  26. Cederbaum, G., Mond, M.: Stability properties of a viscoelastic column under a periodic force. J. Appl. Mech.59, 16–19 (1992).

    Google Scholar 

  27. Cederbaum, G.: Parametric excitation of viscoelastic plates. Mech. Struct. Mech.20, 37–51 (1992).

    Google Scholar 

  28. Popelar, C. F., Popelar, C. H., Kenner, V. H.: Viscoelastic material characterization and modeling for polyethylene. Polymer Eng. Sci.30, 577–586 (1990).

    Google Scholar 

  29. Moon, F. C.: Chaotic vibrations. New York: Wiley 1987.

    Google Scholar 

  30. Wolf, A., Swift, J. B., Swinney, H. L., Vastano, J. A.: Determining Lyapunov exponents from a time series. Physica16 D, 285–317 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touati, D., Cederbaum, G. Influence of large deflections on the dynamic stability of nonlinear viscoelastic plates. Acta Mechanica 113, 215–231 (1995). https://doi.org/10.1007/BF01212644

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212644

Keywords

Navigation