Skip to main content
Log in

Metastable states for the Becker-Döring cluster equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Becker-Döring equations, in whichc l (t) can represent the concentration ofl-particle clusters or droplets in (say) a condensing vapour at timet, are

$$\begin{array}{*{20}c} {{{dc_l (t)} \mathord{\left/ {\vphantom {{dc_l (t)} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = J_{l - 1} (t) - J_l (t)} & {(l = 2,3,...)} \\ \end{array} $$

with

$$J_l (t): = a_l c_1 (t)c_l (t) - b_{l + 1} c_{l + 1} (t)$$

and eitherc 1=const. (‘case A’) or\(\rho : = \sum\limits_1^\infty {lc_l } \)=const. (‘case B’). The equilibrium solutions arec l =Q l z l, where\(Q_l : = \prod\limits_2^l {({{a_{r - 1} } \mathord{\left/ {\vphantom {{a_{r - 1} } {b_r }}} \right. \kern-\nulldelimiterspace} {b_r }})} \). The density of the saturated vapour, defined as\(\rho _s : = \sum\limits_1^\infty {lQ_l z_s ^l } \), wherez s is the radius of convergence of the series, is assumed finite. It is proved here that, subject to some further plausible conditions on the kinetic coefficientsa l andb l , there is a class of “metastable” solutions of the equations, withc 1z s small and positive, which take an exponentially long time to decay to their asymptotic steady states. (An “exponentially long time” means one that increases more rapidly than any negative power of the given value ofc 1z s (or, in caseB,ρρ s ) as the latter tends to zero). The main ingredients in the proof are (i) a time-independent upper bound on the solution of the kinetic equations (this upper bound is a steady-state solution of case A of the equations, of the type used in the Becker-Döring theory of nucleation), and (ii) an upper bound on the total concentration of particles in clusters greater than a certain critical size, which (with suitable initial conditions) remains exponentially small until the time becomes exponentially large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizenman, M., Lebowitz, J. L.: Metastability effects in bootstrap percolation. J. Phys. A21, 3801 (1988)

    Google Scholar 

  • Andreev, A. F.: Singularity of thermodynamic quantities in phase transition points of the first kind. Zh. Eksp. Teor Fiz.45, 2064–2066 (1963); English translation Soviet Physics JETP18, 1415 (1964)

    Google Scholar 

  • Ball, J. M.: private communication (1988)

  • Ball, J. M., Carr, J.: Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data. Proc. R. Soc. Edin.108A, 109–116 (1988)

    Google Scholar 

  • Ball, J. M., Carr, J., Penrose, O.: The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions. Commun. Math. Phys.104, 657–692 (1986)

    Google Scholar 

  • Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfern. Ann. Phys. (Leipzig)24, 719–752 (1935)

    Google Scholar 

  • Burton, J. J.: Nucleation theory. Pp. 195–234 of Statistical Mechanics, Part A: Equilibrium techniques, Berne, B. J. (ed.). New York and London: Plenum Press 1977

    Google Scholar 

  • Capocaccia, D., Cassandro, M., Olivieri, E.: A study of metastability in the Ising model. Commun. Math. Phys.39, 185–205 (1974)

    Google Scholar 

  • Cassandro, M. Olivieri, E.: A rigorous study of metastability in a continuous model. J. Stat. Phys.17, 229–244 (1977)

    Google Scholar 

  • Fisher, M. E.: Theory of condensation and the critical point. Physics3, 255 (1967) or: The theory of equilibrium critical phenomena. Rep. Prog. Phys.30 615–730 (1967)

    Google Scholar 

  • Frenkel, J.: Kinetic theory of liquids. London: Oxford University Press (1946)

    Google Scholar 

  • Glauber, R. J.: Time-dependent statistics of the Ising model. J. Math. Phys.4, 294–307 (1963)

    Google Scholar 

  • Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities. London: Cambridge University Press 1959

    Google Scholar 

  • Hartman, P.: Ordinary differential equations. New York: Wiley 1964

    Google Scholar 

  • Langer, J. S.: Theory of the condensation point. Ann. Phys. (New York)41, 108–157 (1967)

    Google Scholar 

  • McLeod, J. B.: On an infinite set of nonlinear differential equations. Q. J. Math13, 119–128 (1962)

    Google Scholar 

  • Penrose, O.: Kinetics of phase transitions. Lecture Notes in Physics, vol84, pp. 210–234. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  • Penrose, O., Buhagiar, A.: Kinetics of nucleation in a lattice gas model: Microscopic theory and simulation compared. J. Stat. Phys.30, 219–241 (1983)

    Google Scholar 

  • Penrose, O., Lebowitz, J. L.: Rigorous treatment of metastable states in the van der Waals-Maxwell theory. J. Stat. Phys.3, 211–241 (1971)

    Google Scholar 

  • Penrose, O., Lebowitz, J. L.: Towards a rigorous molecular theory of metastability. Pp. 293–340 of Studies in Statistical Mechanics VII (“Fluctuation Phenomena”), ed. Montroll and Lebowitz, Amsterdam: North-Holland 1979, 1987

    Google Scholar 

  • Penrose, O., Lebowitz, J. L. Marro, J., Kalos, M., Tobochnik, J.: Kinetics of a first-order phase transition: Computer simulations and theory. J. Stat. Phys.34, 399–426 (1984)

    Google Scholar 

  • Reuter, G. E. H., Ledermann, W.: On the differential equations for the transition probabilities of Markov processes with enumerably many states. Proc. Camb. Phil. Soc.49, 247–262 (1953)

    Google Scholar 

  • Sewell, G.: Quantum theory of collective phenomena. Oxford: Oxford University Press 1986

    Google Scholar 

  • Vanheuverzwijn, P.: Metastable states in the infinite Ising model. J. Math. Phys.20, 2665–2670 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penrose, O. Metastable states for the Becker-Döring cluster equations. Commun.Math. Phys. 124, 515–541 (1989). https://doi.org/10.1007/BF01218449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01218449

Keywords

Navigation