Skip to main content
Log in

Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For independent translation-invariant irreducible percolation models, it is proved that the infinite cluster, when it exists, must be unique. The proof is based on the convexity (or almost convexity) and differentiability of the mean number of clusters per site, which is the percolation analogue of the free energy. The analysis applies to both site and bond models in arbitrary dimension, including long range bond percolation. In particular, uniqueness is valid at the critical point of one-dimensional 1/∣x−y2 models in spite of the discontinuity of the percolation density there. Corollaries of uniqueness and its proof are continuity of the connectivity functions and (except possibly at the critical point) of the percolation density. Related to differentiability of the free energy are inequalities which bound the “specific heat” critical exponent α in terms of the mean cluster size exponent γ and the critical cluster size distribution exponent δ; e.g., 1+α≦γ (δ/2−1)/(δ−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Barsky, D. J.: Sharpness of the phase transition in percolation models, Commun. Math. Phys.108, 489–526 (1987).

    Google Scholar 

  2. Aizenman, M., Barsky, D. J.: in preparation. See also Barsky, D. J. Rutgers University Ph.D. thesis (1987).

  3. Aizenman, M., Chayes, J. T., Chayes, L., Fröhlich, J., Russo, L.: On a sharp transition from area law to perimeter law in a system of random surfaces. Commun. Math. Phys.92, 19–69 (1983)

    Google Scholar 

  4. Aizenman, M., Newman, C. M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys.36, 107–143 (1984)

    Google Scholar 

  5. Aizenman, M., Newman, C. M.: Discontinuity of the percolation density in one-dimensional 1/∣x−y2 percolation models. Commun. Math. Phys.107, 611–648 (1986)

    Google Scholar 

  6. van den Berg, J., Keane, M.: On the continuity of the percolation probability function, Contemp. Math.26, 61–65 (1984)

    Google Scholar 

  7. Bricmont, J., Lebowitz, J. L.: On the continuity of the magnetization and energy in Ising ferromagnets. J. Stat. Phys.42, 861–869 (1986)

    Google Scholar 

  8. Choquet, G.: Topology. New York: Academic Press 1966

    Google Scholar 

  9. Coniglio, A.: Shapes, surfaces, and interfaces in percolation clusters. In: Physics of finely divided matter. Daoud M. (ed.). Proc. Les Houches Conf. of March, 1985 (to appear)

  10. Chayes, J. T., Chayes, L., Newman, C. M., The stochastic geometry of invasion percolation. Commun. Math. Phys.101, 383–407 (1985)

    Google Scholar 

  11. Durrett, R., Nguyen, B.: Thermodynamic inequalities for percolation. Commun. Math. Phys.99, 253–269 (1985)

    Google Scholar 

  12. Fisher, M. E.: Critical probabilities for cluster size and percolation problems. J. Math. Phys.2, 620–627 (1961)

    Google Scholar 

  13. Fortuin, C., Kastelyn, P.: On the random-cluster model I. Introduction and relation to other models. Physica57, 536–564 (1972)

    Google Scholar 

  14. Fortuin, C., Kastelyn, P., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys.22, 89–103 (1971)

    Google Scholar 

  15. Grimmett, G. R.: On the number of clusters in the percolation model. J. Lond. Math. Soc. (2)13, 346–350 (1976)

    Google Scholar 

  16. Grimmett, G. R.: On the differentiability of the number of clusters per vertex in the percolation model. J. Lond. Math. Soc. (2)23, 372–384 (1981)

    Google Scholar 

  17. Grimmett, G. R., Keane, M., Marstrand, J. M.: On the connectedness of a random graph. Math. Proc. Comb. Philos. Soc.96, 151–166 (1984)

    Google Scholar 

  18. Hammersley, J. M.: Percolation processes. Lower bounds for the critical probability. Ann. Math. Statist.28, 790–795 (1957)

    Google Scholar 

  19. Hammersley, J. M.: A Monte Carlo solution of percolation in the cubic crystal. Meth. Comp. Phys.1, 281–298 (1963)

    Google Scholar 

  20. Hankey, A.: Three properties of the infinite cluster in percolation theory. J. Phys. A11, L49-L55 (1978)

    Google Scholar 

  21. Harris, T. E.: A lower bound for the critical probability in a certain percolation process. Proc. Camb. Philos. Soc.56, 13–20 (1960)

    Google Scholar 

  22. Kesten, H.: Percolation theory for mathematicians. Boston: Birkhäuser 1982

    Google Scholar 

  23. Kesten, H.: The incipient infinite cluster in two-dimensional percolation. Theor. Probab. Rel. Fields,73, 369–394 (1986)

    Google Scholar 

  24. Kesten, H.: A scaling relation at criticality for 2D-percolation. In: Percolation theory and ergodic theory of infinite particle systems Kesten, H., (ed.). IMA volumes in mathematics and its applications, Vol.8, Berlin, Heidelberg, New York: Springer (to appear)

  25. Kikuchi, R.: Concept of the long-range order in percolation problems, J. Chem. Phys.53, 2713–2718 (1970)

    Google Scholar 

  26. Kastelyn, P. W., Fortuin, C. M.: Phase transitions in lattice systems with random local properties. J. Phys. Soc. Jpn.26, [Suppl], 11–14 (1969)

    Google Scholar 

  27. Klein, S. T., Shamir, E.: An algorithmic method for studying percolation clusters. Stanford Univ. Dept. of Computer Science, Report no. STAN-CS-82-933 (1982)

  28. Kunz, H., Souillard, B.: Essential singularity in percolation problems and asymptotic behavior of cluster size distribution. J. Stat. Phys.19, 77–106 (1978)

    Google Scholar 

  29. Leath, P. L.: Cluster shape and critical exponents near percolation threshold. Phys. Rev. Lett.36, 921–924 (1976)

    Google Scholar 

  30. Leath, P. L.: Cluster shape and boundary distribution near percolation threshold. Phys. Rev. B14, 5046–5055 (1976)

    Google Scholar 

  31. Lebowitz, J. L.: Coexistence of phases in Ising ferromagnets. J. Stat. Phys.16, 463–476 (1977)

    Google Scholar 

  32. Newman, C. M.: In equalities for γ and related critical exponents in short and long range percolation. In: Percolation theory and ergodic theory of infinite particle systems Kesten, H., (ed.). IMA volumes in mathematics and its applications, Vol8. Berlin, Heidelberg, New York: Springer (to appear)

  33. Newman, C. M.: Some critical exponent inequalities for percolation. J. Stat. Phys.45, 359–368 (1986)

    Google Scholar 

  34. Newman, C. M., Schulman, L. S.: Infinite clusters in percolation models. J. Stat. Phys.26, 613–628 (1981)

    Google Scholar 

  35. Newman, C. M., Schulman, L. S.: One-dimensional 1/|j − i|s percolation models: The existence of a transition fors ≦ 2. Commun. Math. Phys.104, 547–571 (1986)

    Google Scholar 

  36. Pike, R., Stanley, H. E.: Order propagation near the percolation threshold. J. Phys. A14, L169-L177 (1981)

    Google Scholar 

  37. Rockafellar, T. R.: Convex analysis. Princeton, NJ: Princeton Univ. Press 1970

    Google Scholar 

  38. Ruelle, D.: Statistical mechanics: Rigorous results. New York: W. A. Benjamin 1969

    Google Scholar 

  39. Russo, L.: On the critical percolation probabilities. Z. Wahrscheinlichkeitstheor Verw. Geb.56, 229–237 (1981)

    Google Scholar 

  40. Sykes, M. F., Essam, J. W.: Exact critical percolation probabilities for site and bond problems in two dimensions. J. Math. Phys.5, 1117–1127 (1964)

    Google Scholar 

  41. Wierman, J. C.: On critical probabilities in percolation theory. J. Math. Phys.19, 1979–1982 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. E. Fisher

Research supported in part by NSF Grant PHY-8605164

Research supported in part by the NSF through a grant to Cornell University

Research supported in part by NSF Grant DMS-8514834

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizenman, M., Kesten, H. & Newman, C.M. Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Commun.Math. Phys. 111, 505–531 (1987). https://doi.org/10.1007/BF01219071

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01219071

Keywords

Navigation