Skip to main content
Log in

Super Riemann surfaces: Uniformization and Teichmüller theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Teichmüller theory for super Riemann surfaces is rigorously developed using the supermanifold theory of Rogers. In the case of trivial topology in the soul directions, relevant for superstring applications, the following results are proven. The super Teichmüller space is a complex super-orbifold whose body is the ordinary Teichmüller space of the associated Riemann surfaces with spin structure. For genusg>1 it has 3g-3 complex even and 2g-2 complex odd dimensions. The super modular group which reduces super Teichmüller space to super moduli space is the ordinary modular group; there are no new discrete modular transformations in the odd directions. The boundary of super Teichmüller space contains not only super Riemann surfaces with pinched bodies, but Rogers supermanifolds having nontrivial topology in the odd dimensions as well. We also prove the uniformization theorem for super Riemann surfaces and discuss their representation by discrete supergroups of Fuchsian and Schottky type and by Beltrami differentials. Finally we present partial results for the more difficult problem of classifying super Riemann surfaces of arbitrary topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyakov, A. M.: Quantum geometry of bosonic strings. Phys. Lett.103B, 207–210 (1981)

    Google Scholar 

  2. D'Hoker, E., Phong, D. H.: Multiloop amplitudes for the bosonic Polyakov string. Nucl. Phys.B269, 205–234 (1986)

    Google Scholar 

  3. Moore, G., Nelson, P.: Measure for moduli. Nucl. Phys.B266, 58–74 (1986)

    Google Scholar 

  4. Belavin, A. A., Knizhnik, V. G.: Algebraic geometry and the geometry of quantum strings. Phys. Lett.168B, 201–206 (1986)

    Google Scholar 

  5. D'Hoker, E., Phong, D. H.: Loop amplitudes for the fermionic string. Nucl. Phys.B278, 225–241 (1986)

    Google Scholar 

  6. Moore, G., Nelson, P., Polchinski, J.: Strings and supermoduli. Phys. Lett.169B, 47–53 (1986)

    Google Scholar 

  7. Friedan, D.: Notes on string theory and two-dimensional conformal field theory. In: The proceedings of the workshop on unified string theories. Gross, D., Green, M. (eds.), Singapore: World Press 1986

    Google Scholar 

  8. Rogers, A.: A global theory of supermanifolds. J. Math. Phys.21, 1352–1365 (1980)

    Google Scholar 

  9. Rabin, J. M., Crane, L.: Global properties of supermanifolds. Commun. Math. Phys.100, 141–160 (1985)

    Google Scholar 

  10. Rabin, J. M., Crane, L.: How different are the supermanifolds of Rogers and DeWitt? Commun. Math. Phys.102, 123–137 (1985)

    Google Scholar 

  11. Baranov, M. A., Shvarts, A. S.: Multiloop contribution to string theory. JETP Lett.42, 419–421 (1986)

    Google Scholar 

  12. Martinec, E.: Conformal field theory on a (super-)Riemann surface. Nucl. Phys.B281, 157–210 (1987)

    Google Scholar 

  13. Robers, A.: Graded manifolds, supermanifolds, and infinite-dimensional Grassmann algebras. Commun. Math. Phys.105, 375–384 (1986)

    Google Scholar 

  14. Arvis, J. F.: Classical dynamics of the supersymmetric Liouville theory. Nucl. Phys.B212, 151–172 (1983)

    Google Scholar 

  15. Berkovits, N.: Calculation of scattering amplitudes for the Neveu-Schwarz model using supersheet functional integration. Berkeley preprint UCB-PTH-85/55 (1985)

  16. DeWitt, B. S.: Supermanifolds. Cambridge: Cambridge University Press 1984

    Google Scholar 

  17. Alvarez-Gaumé, L., Moore, G., Vafa, C.: Theta functions, modular invariance, and strings. Commun. Math. Phys.106, 1–40 (1986)

    Google Scholar 

  18. Farkas, H. M., Kra, I.: Riemann surfaces. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  19. Forster, O.: Lectures on Riemann surfaces. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  20. Nelson, P., Moore, G.: Heterotic geometry. Nucl. Phys.B274, 509–519 (1986)

    Google Scholar 

  21. Rothstein, M.: Deformations of complex supermanifolds. Proc. AMS95, 255–260 (1985)

    Google Scholar 

  22. Hodgkin, L.: A direct calculation of super Teichmüller space. King's College Mathematics Department preprint, January 1987

  23. Kodaira, K.: Complex manifolds and deformation of complex structures. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  24. Bers, L.: Uniformization, moduli and Kleinian groups. Bull. London Math. Soc.4, 257–300 (1972)

    Google Scholar 

  25. Ahlfors, L., Bers, L.: Riemann's mapping theorem for variable metrics. Ann. Math.72, 385–404 (1960)

    Google Scholar 

  26. Earle, C. J.: Teichmüller theory. In: Discrete groups and automorphic functions. Harvey, W. J. (ed.). London: Academic Press 1977

    Google Scholar 

  27. Batchelor, M.: The structure of supermanifolds. Trans. AMS253, 329–338 (1979)

    Google Scholar 

  28. Batchelor, M.: Two approaches to supermanifolds. Trans. AMS258, 257–270 (1980)

    Google Scholar 

  29. Rogers, A.: On the existence of global integral forms on supermanifolds. J. Math. Phys.26, 2749–2753 (1985)

    Google Scholar 

  30. Bers, L.: Uniformization by Beltrami equations. Commun. Pure Appl. Math.14, 215–228 (1961)

    Google Scholar 

  31. Friedan, D., Shenker, S.: The integrable analytic geometry of quantum string. Phys. Lett.175B, 287–296 (1986)

    Google Scholar 

  32. Lawson, H. B.: Foliations. Bull. AMS80, 369–418 (1974)

    Google Scholar 

  33. Bott, R., Tu, L. W.: Differential forms in algebraic topology. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  34. Leites, D.: Introduction to the theory of supermanifolds. Russ. Math. Surv.35, 1–64 (1980)

    Google Scholar 

  35. Manin, Yu. I.: Quantum strings and algebraic curves, talk presented at the International Congress of Mathematicians, Berkeley 1986

  36. Le Brun, C., Rothstein, M.: Moduli of super Riemann surfaces. Princeton preprint 1987

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Enrico Fermi Fellow. Research supported by the NSF (PHY 83-01221) and DOE (DE-AC02-82-ER-40073).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, L., Rabin, J.M. Super Riemann surfaces: Uniformization and Teichmüller theory. Commun.Math. Phys. 113, 601–623 (1988). https://doi.org/10.1007/BF01223239

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01223239

Keywords

Navigation