Skip to main content
Log in

Modeling of diffusion processes during carburization of alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A Model was developed for the finite-difference calculation of carburization profiles in high-temperature alloys. The method includes the ternary crossdiffusion effect due to substitutional alloying elements that are preferentially oxidized. It can be used to treat cases such as carburization of preoxidized alloys or simultaneous oxidation and carburization. Up to three distinct types of carbide precipitation reactions can be included in the calculations. The solubility product is computed for each reaction and the amount of C that reacts is removed from the diffusion process. The model can treat two sets of boundary conditions corresponding to the presence or absence of a protective oxide scale. For comparison, under protective conditions carburization profiles were obtained for preoxidized alloys using C14 radioactive tracer. The application of the model yields values for the diffusivities of C in the alloys tested. Under nonprotective conditions, the predictions of the model were compared to carburization profiles reported for pack carburization tests. The method is able to predict maximum carbide levels and penetration depths for different alloys in various conditions and can be used in the selection and design of high-temperature alloys for use in carburizing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. I. Goldstein and A. E. Moren,Metall. Trans. 9A, 1515 (1978).

    Google Scholar 

  2. D. Farkas and J. Delgado,Scripta Met. 17, 261 (1983).

    Google Scholar 

  3. S. Mrowec and T. Werber, Chap. 4 inGas Corrosion of Metals (National Bureau of Standards, Washington, D.C., 1978).

    Google Scholar 

  4. D. Coates,Metall. Trans. 3, 1203 (1976).

    Google Scholar 

  5. J. S. Kirkaldy,Can. Metall. Q. 8, 35 (1969).

    Google Scholar 

  6. E. K. Ohriner and J. E. Morral,Scr. Metall. 13, 7 (1979).

    Google Scholar 

  7. G. Roberts,Met. Sci. 13, 94 (1979).

    Google Scholar 

  8. O. Bohm and M. Kalweit,Acta Metall. 12, 641 (1964).

    Google Scholar 

  9. K. Bongartz, D. F. Lupton, and H. Schuster,Metall. Trans. 11A, 1883 (1980).

    Google Scholar 

  10. K. E. Blazek and J. R. Cost,Trans. JIM,17, 630 (1976).

    Google Scholar 

  11. A. H. Eltoukhy and J. E. Greene,J. Appl. Phys. 51, 4444 (1980).

    Google Scholar 

  12. C. Brown and J. S. Kirkaldy,Trans. Am. Inst. Min. Metall. Pet. Eng. 230, 223 (1964).

    Google Scholar 

  13. A. R. Mitchell, Chap. 2Computational Methods in Partial Differential Equations (Wiley, New York 1976).

    Google Scholar 

  14. K. Ohla, I. Wolf, and H. J. Grabke, to be published.

  15. T. Wada,Metall. Trans. 11A, 1076 (1980).

    Google Scholar 

  16. T. Hirano, M. Okada, H. Araki, T. Noda, H. Yoshida, and R. Watanabe,Metall. Trans. 12A, 451 (1981).

    Google Scholar 

  17. G. H. Meier, W. C. Coons, and R. A. Perkins,Oxid. Met. 17, 235 (1982).

    Google Scholar 

  18. O. Demel,Radex Rundsch. 2, 201 (1977).

    Google Scholar 

  19. R. A. Perkins and P. T. Carlson,Metall. Trans. 5, 1511 (1974).

    Google Scholar 

  20. R. P. Agrarwala, M. C. Naik, M. S. Arnand, and A. R. Paul,J. Nucl. Mater. 36, 41 (1970).

    Google Scholar 

  21. W. Steinkusch,Werkst. Korros. 30, 837 (1979).

    Google Scholar 

  22. A. W. Bowen and G. W. Leak,Metall. Trans,1, 1695 (1970).

    Google Scholar 

  23. M. A. Krishtal and A. M. Morova,Fiz. Tekhn. Nauk,1, 93 (1967).

    Google Scholar 

  24. W. Batz, H. W. Mead, and C. E. Birchenall,J. Met. 4, 1070 (1952).

    Google Scholar 

  25. R. J. Borg and D. Y. F. Lai,J. Appl. Phys. 41, 5193 (1970).

    Google Scholar 

  26. H. V. Mirami and P. Maaskant,Phys. Status. Solids,A14, 521 (1972).

    Google Scholar 

  27. K. Ledjeff, A. Rahmel, and M. Schorr,Werkst. Korros. 31, 83 (1980).

    Google Scholar 

  28. R. O. Williams,Metall. Trans. 13A, 959 (1982).

    Google Scholar 

  29. T. Takahashi, J. Fujiwara, T. Matsushima, M. Kiyokawa, I. Marimoto, and T. Watanabe,Trans. Iron Steel Inst. Jpn. 18, 221 (1978).

    Google Scholar 

  30. O. Kubaschewski and C. B. Alock,Metallurgical Thermochemistry Pergamon Press, New York, 1979.

    Google Scholar 

  31. T. Wada, H. Wada, J. F. Elliot, and J. Chipman,Metall. Trans. 2, 2199 (1971).

    Google Scholar 

  32. V. I. Alekseev and M. Parnis,Dokl. Akad. Nauk SSSR,224, 922 (1975).

    Google Scholar 

  33. T. Nishizawa and B. Uhrenius,Scand. J. Metall. 6, 67 (1977).

    Google Scholar 

  34. M. Small and E. Ryba,Metall. Trans. 12A, 1389 (1981).

    Google Scholar 

  35. I. Tomilin,Zh. Fiz. Kim. 588 (1968).

  36. K. Natessan and F. Kasner,Metall. Trans. 4, 2557 (1973).

    Google Scholar 

  37. F. N. Mazandarany and R. D. Pehlke,Metall. Trans. 4, 2067 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkas, D., Ohla, K. Modeling of diffusion processes during carburization of alloys. Oxid Met 19, 99–115 (1983). https://doi.org/10.1007/BF01225978

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225978

Key words

Navigation