Skip to main content
Log in

The shoshonite porphyry Cu-Au association at Bajo de la Alumbrera, Catamarca Province, Argentina

Die Shoshonit Porphyry Cu-Au Assoziation von Bajo de is Alumbrera, Catamarca Provinz, Argentinien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Bajo de la Alumbrera forms an example of a series of world class copper-gold deposits that are hosted by potassic igneous rocks. The Bajo de la Alumbrera porphyry copper-gold deposit is situated in the Catamarca Province of Northwest-Argentina and belongs to the ten largest copper mines in the world; it is also one of the largest gold producers in South America.

The deposit is characterized by an alteration-zoning pattern with a central potassic core which grades outwards into a zone with propylitic alteration and an intermediate annular phyllic overprint. Porphyry copper-gold mineralization consists mainly of disseminated and/or vein-related chalcopyrite within the central potassic alteration zone which also hosts the highest gold grades (up to 2 ppm). Mineralization is genetically related to co-magmatic hypabyssal dacite domes with shoshonitic compositions which intruded the high-K calc-alkaline andesitic to latitic lava flows, breccia tuffs, and agglomerates of the Upper Miocene Farallon Negro Formation. The Farallon Negro Formation is interpreted as the remnants of a major stratovolcano some 16 km in diameter, with volcanism being controlled by sinistral pull-apart tectonics along a major NW-trending lineament.

The dacitic rocks associated with the porphyry copper-gold mineralization have porphyritic textures with phenocrysts of alkali feldspar, plagioclase, biotite, and very rare amphibole in a fine-grained feldspathic groundmass. The abundance of hydrous minerals, such as biotite phenocrysts and apatite microphenocrysts, is consistent with the volatile-rich nature of the melts. The rocks underwent moderate degrees of clinopyroxene-biotite-âpatite-titanite fractionation. Several samples are overprinted by weak to moderate potassic or carbonate-sericite alteration. Geochemically, the dacites are characterized by high LILE (e.g. K20 up to 7.16 wt%, and Rb, Sr, and Ba up to 145 ppm, 445 ppm, and 610 ppm, respectively), moderate LREE (La < 73 ppm and Ce < 140 ppm), and low HFSE (TiO2 < 0.92 wt%, Zr < 142 ppm, Hf < 4.6) which are typical for subduction-related potassic igneous rocks from a mature continental-arc setting. The rocks have evolved compositions with relatively low mg# < 53. Their high Ba/Nb and high Rb/Nb ratios (up to 87 and 31, respectively) clearly distinguish them from rocks derived from within-plate settings.

The rocks from Bajo de la Alumbrera contain average ratios of Fe2O3/(FeO+Fe2O3) as high as 0.49 reflecting the oxidized nature of their parental melts.

Zusammenfassung

Bajo de la Alumbrera ist ein Beispiel für eine bedeutende Gold-Kupfer Lagerstätte in Kalium-reichen Magmatiten. Die Kupfer-Gold Lagerstätte Bajo de la Alumbrera gehört zum sogenannten Porphyry-Typ und befindet sich in der Catamarca Provinz im Nordwesten von Argentinien. Bajo de la Alumbrera zählt zu den zehn größten Kupferminen der Welt und ist einer der größten Goldproduzenten in Südamerika.

Die Lagerstätte zeichnet sich aus durch eine klassische Zonierung der Alterationszonen, beginnend mit der zentral aufgeschlossenen `potassischen' Alterationszone (sekundärer Biotit-Magnetit-Orthoklas), die weiträumig von ‘propylitischer’ Alteration (sekundärer Epidot-Chlorit) umgeben wird. Beide Alterationstypen werden von einer spätgenetischen ‘phyllischen’ Alteration (sekundäre Tonminerale-Serizit-Pyrit) umgewandelt. Die Kupfer-Gold-Vererzung besteht überwiegend aus Kupferkies, der entweder feinverteilt in den Silikaten oder in Quarzadern innerhalb der potassischen Alterationszone vorkommt. Diese Zone beherbergt neben den höchsten Kupfergehalten auch die höchsten Gold-Gehalte von bis zu 2 ppm. Die Vererzung steht in direktem genetischen Zusammenhang mit subvulkanischen Dazit-Domen mit außergewöhnlich hohen Kalium-Gehalten, die die kalkalkalischen Andesite, Latite, Tuffbrekzien und Agglomerate der Ober-Miozänen Farallon Negro Formation intrudierten. Die Farallon Negro Formation stellt die erodierten Reste eines Stratovulkans mit schätzungsweise 16 Kilometern Durchmesser dar. Der Vulkanismus ereignete sich innerhalb eines ‘Pull-Apart’ Beckens, entlang eines großen Nordwest-streichenden Lineaments.

Die dazitischen Muttergesteine der Kupfer-Gold-Vererzung haben porphyrische Texturen mit Phänokristallen bestehend aus Kalifeldspat, Plagioklas, Biotit, und, sehr selten, Amphibol in einer fein- bis mikrokristallinen Grundmasse. Die Häufigkeit von Mineralen wie Biotit und Apatit reflektiert die hohen Gehalte an volatilen Phasen in der Schmelze. Die mineralogische Zusammensetzung der Gesteine wurde von einer moderaten Klinopyroxen-Biotit-Apatit-Titanit Fraktionierung mitgeprägt. Einige der untersuchten Dazite wurden von einer schwachen bis moderaten Biotit-Magnetit-Orthoklas oder Karbonat-Serizit-Alteration überprägt.

Die chemische Zusammensetzung der Dazite zeichnet sich aus durch hohe Gehalte an LILE (z. B. K20 bis zu 7.16 Gew%, Rb, Sr, und Ba bis zu 145 ppm, 445 ppm, und 610 ppm), moderate Gehalte an LREE (z.B. La < 73 ppm, und Ce < 140 ppm), und geringe Gehalte an HFSE (z.B. TiO2 < 0.92 Gew%, Zr < 142 ppm, und Hf < 4.6 ppm), die typisch sind für Kalium-reiche Magmatite von kontinentalen Subduktionszonen. Die untersuchten Gesteine sind relativ fraktioniert und besitzen geringe mg# < 53. Ihre hohen Ba/Nb und Rb/Nb Verhältnisse sind typisch für Kalium-reiche Magmatite aus Subduktionszonen und unterscheiden sie eindeutig von Gesteinen aus within-plate settings.

Die hohe Oxidationsstufe der Mutterschmelze reflektiert sich in den hohen Fe2O3/ (FeO + Fe2O3) Verhältnissen der untersuchten Gesteine von 0.49.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allmendinger RW (1986) Tectonic development, southeastern border of the Puna Plateau, north-western Argentine Andes. Bull Am Geol Soc 97: 1070–1082

    Google Scholar 

  • Allmendinger RW, Jordan TE, Palma M, Ramos VA (1982) Perfil estructural en la Puna Catamarquena (25°-27° S), Argentina. 5th Congr Latino Geol Actas 1: 499–518

    Google Scholar 

  • Allmendinger RW, Ramos VA, Jordan TE, Palma M, Isacks BL (1983) Paleogeography and Andean structural geometry, northwestern Argentina. Tectonics 2: 1–16

    Google Scholar 

  • Allmendinger RW, Strecker M, Eremchuk JE, Francis PW (1989) Neotectonic deformation of the southern Puna Plateau, northwestern Argentina. J South Am Earth Sci 2: 111–130

    Google Scholar 

  • Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nasca Plate beneath South America. Geology 4: 686–692

    Google Scholar 

  • Caelles JC (1979) The geological evolution of the Sierras Pampeanas Massif, La Rioja and Catamarca Provinces, Argentina. Thesis, Queen's University, Kingston, Ontario (unpublished)

    Google Scholar 

  • Caelles JC, Clark AH, Farrar E, McBride SL, Quirt S (1971) Potassium-argon ages of porphyry copper deposits and associated rocks in the Farallon Negro-Capillitas District, Argentina. Econ Geol 66: 961–964

    Google Scholar 

  • Carmichael ISE, Lange RA, Luhr JF (1996) Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. Contrib Mineral Petrol 124: 302–333

    Google Scholar 

  • Clark AH, Farrar E, McBride SL, Quirt E (1971) Potassium-argon ages of porphyry copper deposits and associated rocks in the Farallon Negro-Capillitas District, Catamarca, Argentina. Econ Geol 66: 961–964

    Google Scholar 

  • Dalziel IWD (1995) Earth before Pangea. Sci Am 272: 58–63

    Google Scholar 

  • Frutos J (1982) Andean metallogeny related to the tectonic and petrologic evolution of the Cordillera. Some remarkable points. In:Amstutz GC, El Goresy A, Frenzel G, Kluth C, Moh G, Wauschkuhn A, Zimmermann RA (eds) Ore genesis - the State of the Art. Springer, Berlin Heidelberg New York Tokyo Gemuts I, Guidici J (1995) Precious and base metal deposits in Argentina - El Salado Prospect, an example. AIG Bull 18: 17-22

    Google Scholar 

  • Godeas MC, de Svetliza SJS (1980) Alteracion hidrotermal y mineralizacion en et Bajo de la Alumbrera, Provincia de Catamarca. Rev Asoc Geol Arg 35: 318–331

    Google Scholar 

  • Gonzalez F (1950) Geologia y petrografia de las hojas 12d (Capillitas) y 13d (Andalgala). Ministerio de Industria y Comercio de la Nacion Argentina, Buenos Aires

    Google Scholar 

  • Gonzalez OE (1975) Geologia y alteracion en et cobre porfidico ‘Bajo La Alumbrera’, Republic Argentina. II. Congreso Ibero-Americano de Geologia Economica 2: 247–270

    Google Scholar 

  • Gonzalez OE (1990) Las volcanitas del Portezuelo Las Animas, Sierra de Aconquija, Provincias de Catamarca y Tucuman. Rev Asoc Geol Argent 45: 386–396

    Google Scholar 

  • Gonzalez OE, Paz RM, Godeas M (1989) Volcanitas en et Rincon y Huertas Viejas, Sierra de Aconquija, Tucuman. Rev Asoc Geol Argent 44: 169–174

    Google Scholar 

  • Götze HJ, Lahmeyer B, Schmidt S, Strunk S (1987) Gravity field and megafault-system of the Central Andes (20°-26° S). Terra Cogn 7: 57

    Google Scholar 

  • fnGuilbert JM (dy1995) Geology, alteration, mineralization, and genesis of the Bajo de la Alumbrera porphyry copper-gold deposit, Catamarca Province, Argentina. In:Pierce FW, Bohn JG (eds) Porphyry copper deposits of the American Cordillera. Arizona Geol Soc Digest 20: 646–656

  • Harangi S (1994) Geochemistry and petrogenesis of the early Cretaceous continental rifttype volcanic rocks of the Mecsek Mountains, South Hungary. Lithos 33: 303–321

    Google Scholar 

  • Introcaso A, Lion A, Ramos VA (1987) La estructura profunda de las Sierras de Cordoba. Rev Asoc Geol Argent 42: 177–187

    Google Scholar 

  • Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286: 737–764

    Google Scholar 

  • Kay SM, Gordillo CE (1994) Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the central Andes. Contrib Mineral Petrol 117: 25–44

    Google Scholar 

  • Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C (1987) Probing the evolving Andean lithosphere: Mid-late Tertiary magmatism in Chile (29°-30° S) over the modern zone of subhorizontal subduction. J Geophys Res 92: 6173–6189

    Google Scholar 

  • Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C, Gordillo CE (1988) Tertiary Andean magmatism in Chile and Argentina between 28° and 33° S: correlation of magmatic chemistry with a changing Benioff zone. J South Am Earth Sci 1: 21–38

    Google Scholar 

  • Knox WJ, Kay SM, Coira B (1989) Geochemical evidence on the origin of Quaternary basaltic andesites of the Puna, NW-Argentina. Rev Asoc Geol Argent 44: 194–206

    Google Scholar 

  • Llambias JE (1970) Geologia de los yacimientos mineros de Aguas de Dionisio. Rev Asoc Mineral Petrogr Sed 1: 2–32

    Google Scholar 

  • Llambias EG (1972) Estructura del grupo volcanico Farallon Negro, Catamarca, Republica Argentina. Rev Asoc Geol Arg 27: 161–169

    Google Scholar 

  • Meinert LD, Hefton KK, Mayes D, Tasiran I (1997) Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg District, Irian Jaya. Econ Geol 92: 509–533

    Google Scholar 

  • Müller D, Groves DI (1993) Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits. Ore Geol Rev 8: 383–406

    Google Scholar 

  • Müller D, Groves DI (1997) Potassic igneous rocks and associated gold-copper mineralization 2nd ed. Springer, Berlin Heidelberg New York Tokyo, 238 pp (Lecture Notes in Earth Sciences 56)

    Google Scholar 

  • Müller D, Rock NMS, Groves DI (1992) Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic settings: a pilot study. Mineral Petrol 46: 259–289

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastomonon area, northern Turkey. Contrib Mineral Petrol 58: 63–81

    Google Scholar 

  • Pilger RH (1984) Cenozoic plate kinematics, subduction and magmatism: South American Andes. J Geol Soc Lond 141: 793–802

    Google Scholar 

  • Ramos VA, Cegarra M, Cristallini E (1996) Cenozoic tectonics of the High Andes of westcentral Argentina (30-36° S latitude). Tectonophysics 259: 185–200

    Google Scholar 

  • Salfity JA (1985) Lineamentos transversales al rumbo Andino en et Noroeste Argentino. Actas IV Congresso Geologico Chileno Antofagasta 1/2: 119–137

    Google Scholar 

  • Sasso AM (1997) The evolution and origin of porphyry Cu-Au and epithermal Au-Ag mineralization, Farallon Negro District, NW-Argentina. Thesis, Queen's University, Kingston, Ontario (unpublished)

    Google Scholar 

  • Sasso AM, Clark AH, Farrar E (1995) Tectonic controls on scale of Upper Miocene Cu-Au mineralization centres 250 km to the east of coeval mineralization in the Chilean Andes: preliminary results from the Farallon Negro Project, Catamarca, Argentina. In:Clark AH (ed) Giant ore deposits 11. Queen's University, Kingston, Ontario, pp 101–111

    Google Scholar 

  • Schreiber U, Schwab K (1991) Geochemistry of Quaternary shoshonitic lavas related to the Calama-Olacapato-El Toro lineament (NW-Argentina). J South Am Earth Sci 4: 73–86

    Google Scholar 

  • Schwab K, Lippolt H (1974) K-Ar mineral ages and late Cenozoic history of the Salar de Canchari area (Argentina Puna). IAVCEI Symposium on `Andean and Antarctic volcanology problems', Santiago de Chile: 698–714

  • Sillitoe RH (1977) Petmo-Carboniferous, Upper Cretaceous, and Miocene porphyry copper-type mineralization in the Argentinian Andes. Econ Geol 72: 99–109

    Google Scholar 

  • Sillitoe RH (1997) Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Aust J Earth Sci 44: 373–388

    Google Scholar 

  • Smalley RF, Isacks BL, Castano JC (1985) Preliminary results on the thickness of the Benioff zone in the San Juan Province of Argentina from digital local network data. EOS Transact Am Geophys Union 66: 299

    Google Scholar 

  • Strecker MR, Cerveny P, Bloom AL, Malizia D (1989) Late Cenozoic tectonism and landscape development in the foreland of the Andes: northern Sierras Pampeanas (26°28° S), Argentina. Tectonics 8: 517–534

    Google Scholar 

  • Stults A (1985) Geology of the Bajo de la Alumbrera porphyry copper and gold prospect, Catamarca Province, Argentina. Thesis, University of Arizona, Tucson, USA (unpublished) Sun S-S,

    Google Scholar 

  • McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In:Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Spec Publ 42: 313–345

  • Vila T, Sillitoe RH (1991) Gold-rich porphyry systems in the Maricunga Belt, Northern Chile. Econ Geol 86: 1238–1260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, D., Forrestal, P. The shoshonite porphyry Cu-Au association at Bajo de la Alumbrera, Catamarca Province, Argentina. Mineralogy and Petrology 64, 47–64 (1998). https://doi.org/10.1007/BF01226563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01226563

Keywords

Navigation