Skip to main content
Log in

Direct methods for primary decomposition

  • Published:
Inventiones mathematicae Aims and scope

Summary

LetI be an ideal in a polynomial ring over a perfect field. We given new methods for computing the equidimensional parts and radical ofI, for localizingI with respect to another ideal, and thus for finding the primary decomposition ofI. Our methods rest on modern ideas from commutative algebra, and are direct in the sense that they avoid the generic projections used by Hermann (1926) and all others until now.

Some of our methods are practical for certain classes of interesting problems, and have been implemented in the computer algebra system Macaulay of Bayer and Stillman (1982–1992).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avramov, L.: Homology of local flat extensions and complete intersection defects. Math. Ann.228, 27–37 (1977)

    Google Scholar 

  2. Bayer, D.: The division algorithm and the Hilbert scheme. Thesis, Harvard University, 1982. Order number 82-22588, Univ. Microfilms Intl., Ann Arbor Michigan (1982)

    Google Scholar 

  3. Bayer, D., Galligo, A., Stillman, M.: Computing primary decompositions (in preparation)

  4. Bayer, D., Stillman, M.: Macaulay: A system for computation in algebraic geometry and commutative algebra. Source and object code available for Unix and Macintosh computers. Contact the authors, or download from zariski. harvard. edu via anonymous ftp. (login: anonymous, password: any, cd Macaulay) (1982–1990)

  5. Bayer, D., Stillman, M.: A criterion for detectingm-regularity. Invent. Math.87, 1–11 (1987)

    Google Scholar 

  6. Bayer, D., Stillman, M.: Computation of Hilbert functions. J. Symb. Comput.14, 31–50 (1992)

    Google Scholar 

  7. Bayer, D., Mumford, D.: What can be computed in algebraic geometry? In: Eisenbud, D., Robbiano, L. (eds.), Proceedings of the Cortona conference on computational algebraic geometry Cambridge: Cambridge University Press 1993

    Google Scholar 

  8. Bertram, A., Ein L., Lazarsfeld R.: Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, (preprint)

  9. Brennan, J.P., Vasconcelos, W.: Effective computation of the integral closure of a morphism. J. Pure Appl. Alg. (to appear)

  10. Buchsbaum, D.A., Eisenbud, D.: What makes a complex exact? J. Algebra25, 259–268 (1973)

    Google Scholar 

  11. Buchsbaum, D.A., Eisenbud, D.: Some structure theorems for finite free resolutions. Adv. Math.12, 84–139 (1974)

    Google Scholar 

  12. Buchsbaum, D.A., Eisenbud, D.: What annihilates a module. J. Algebra47, 231–243 (1977)

    Google Scholar 

  13. Cox, D., Little, J., O'Shea, D.: Ideals, varieties and algorithms. Berlin Heidelberg New York: Springer 1992

    Google Scholar 

  14. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. (Brandeis Lect. Notes. 1989)

  15. Eisenbud, D., Levine, H.: An algebraic formula for the degree of aC map germ. Ann. Math.106, 19–44 (1977)

    Google Scholar 

  16. Eisenbud, D., Stillman, M.: Methods in comp algebraic geometry and commutative algebra (in preparation)

  17. Eisenbud, D., Sturmfels, B.: Finding sparse systems of parameters. (in preparation)

  18. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomials ideals. J. Symb. Comput6, 149–167 (1988)

    Google Scholar 

  19. Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique IV. Publ. Math., Inst. Hautes Étud. Sci.32 (1967)

  20. Gruson, L., Lazarsfeld, R., Peskine, C.: On a theorem of Castelnuovo and the equations defining space curves. Invent Math.72, 491–506 (1983)

    Google Scholar 

  21. Hartshorne, R.: Algebraic geometry. Berlin Heidelberg New York: Springer 1977

    Google Scholar 

  22. Hermann, G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann.95, 736–788 (1926)

    Google Scholar 

  23. Hilbert, D.: Über die Theorie der algebraischer Formen. Math. Ann.36, 473–534 (1890)

    Google Scholar 

  24. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic 0. Ann. Math.79, 205–326 (1964)

    Google Scholar 

  25. Hochster, M.: Symbolic powers in Noetherian domains. Ill. J. Math.15, 9–27 (1971)

    Google Scholar 

  26. Kaplansky, I.: Commutative Rings. Boston: Allyn and Bacon 1970

    Google Scholar 

  27. Knuth, D.: The art of computer programming vol. 2: Seminumerical algorithms. Reading: Addison-Wesley 1971

    Google Scholar 

  28. Krick, T., Logar, A.: An algorithm for the computation of the radical of an ideal in the ring of polynomials. In: Mattson, H.F. et al. (eds.) Proceedings 9th AAEEC. (Lect. Notes Comput. Sci., vol. 539, pp. 195–205) Berlin Heidelberg New York: Springer 1991

    Google Scholar 

  29. Kunz, E.: Kähler Differentials. Wiesbaden: Viehweg 1986

    Google Scholar 

  30. Lazard, D.: Ideal bases and primary decomposition: case of two variables. J. Symb. Comput. 261–270 (1985)

  31. Lazard, D.: Commutative algebra and computer algebra. (Lect. Notes Comput. Sci., vol. 144, pp. 40–48) Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  32. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comput. (to appear)

  33. Lazarsfeld, R.: A sharp Castelnuovo bound for smooth surfaces. Duke Math. J.55, 423–429 (1987)

    Google Scholar 

  34. Matsumura, H.: Commutative algebra. New York: Benjamin 1970

    Google Scholar 

  35. Matsumura, H.: Commutative ring theory. Cambridge: Cambridge University Press 1986

    Google Scholar 

  36. Mumford, D.: Varieties defined by quadratic equations. In: Proceedings, of the conference at the Centro Int. Mat. Estivo (CIME). Varenna 1969. Rome: Cremonese 1970

    Google Scholar 

  37. Nagata, M.: Local rings. New York: Interscience 1962

    Google Scholar 

  38. Northcott, D.G.: A homological investigation of a certain residual ideal. Math. Ann.150, 99–110 (1963)

    Google Scholar 

  39. Peskine, C., Szpiro, L.: Liaison des variétés algébriques I. Invent. Math.26, 271–302 (1974)

    Google Scholar 

  40. Vasconcelos, W.: Computing the integral closure of an affine domain. Proc. Am. Math. Soc.113, 633–638 (1991)

    Google Scholar 

  41. Scheja, G., Storch, U.: Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math.278, 157–170 (1975)

    Google Scholar 

  42. Seidenberg, A.: On the Lasker-Noether decomposition theorem. Am. J. Math.106, 611–638 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 10-I-1991 & 26-III-1992

The authors are grateful to the NSF for partial support during this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenbud, D., Huneke, C. & Vasconcelos, W. Direct methods for primary decomposition. Invent Math 110, 207–235 (1992). https://doi.org/10.1007/BF01231331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01231331

Keywords

Navigation