Skip to main content
Log in

A feature space for edgels in images with landmarks

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In many current medical applications of image analysis, objects are detected and delimited by boundary curves or surfaces. Yet the most effective multivariate statistics available pertain to labeled points (landmarks) only. In the finite-dimensional feature space that landmarks support, each case of a data set is equivalent to a deformation map deriving it from the average form. This paper introduces a new extension of the finite-dimensional spline-based approach for incorporating edge information. In this implementation edgels are restricted to landmark loci: they are interpreted as pairs of landmarks at infinitesimal separation in a specific direction. The effect of changing edge direction is a singular perturbation of the thin-plate spline for the landmarks alone. An appropriate normalization yields a basis for image deformations corresponding to changes of edge direction without landmark movement; this basis complements the basis of landmark deformations ignoring edge information. We derive explicit formulas for these edge warps, evaluate the quadratic form expressing bending energies of their formal combinations, and show the resulting spectrum of edge features in typical scenes. These expressions will aid all investigations into medical images that entail comparisons of anatomical scene analyses to a normative or typical form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Duchon, “Interpolation des fonctions de deux variables suivant la principe de la flexion des plaques minces,”RAIRO Anal. Numér., vol. 10, pp. 5–12, 1976.

    Google Scholar 

  2. J. Meinguet, “Multivariate interpolation at arbitrary points made simple,”Z. Ange. Math. Phys. vol. 30, pp. 292–304, 1979.

    Google Scholar 

  3. D. Terzopoulos, “Multilevel computational processes for visual surface reconstruction,”Comput. Vis., Graph., Image Process., vol. 24, pp. 52–96, 1983.

    Google Scholar 

  4. A. Witkin, D. Terzopoulos, and M. Kass, “Signal matching through scale space,”Intl. J. Comput. Vis., vol. 1, pp. 133–144, 1987.

    Google Scholar 

  5. F.L. Bookstein,The Measurement of Biological Shape and Shape Change, Springer-Verlag: Berlin, 1978, chap. 5.

    Google Scholar 

  6. F.L. Bookstein,Morphometric Tools for Landmark Data, Cambridge University Press: New York, 1991.

    Google Scholar 

  7. F.L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,”IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-11, pp. 567–585, 1989.

    Google Scholar 

  8. S. Timoshenko and S. Woinowsky-Krieger,Theory of Plates and Shells, 2nd ed., McGraw-Hill: New York, 1959.

    Google Scholar 

  9. C.R. Rao,Linear Statistical Inference and Its Applications, 2nd ed., John Wiley: New York, 1973, p. 33.

    Google Scholar 

  10. S. Timoshenko and S. Woinowsky-Krieger,Theory of Plates and Shells, 2nd ed., McGraw-Hill: New York, 1959, pp. 287–289.

    Google Scholar 

  11. F.L. Bookstein and W.D.K. Green, “A feature space for derivatives of deformations,” inProceedings of the Thirteenth International Conference on Information Processing in Medical Imaging, H.H. Barrett and A.F. Gmitro, eds., Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1993, to appear.

    Google Scholar 

  12. F.L. Bookstein and W.D.K. Green, “Edge Information at Landmarks in Medical Images,” Biomedical Communications, Univ. of Michigan, Ann Arbor, MI, videotape BMC 818, 1992; also presented at the 1992 Conf. on Visualization and Biomedical Computing, Chapel Hill, NC, October 1992.

    Google Scholar 

  13. K.V. Mardia, J. Kent, and A. Walder, “Statistical shape models in image analysis,” inComputing Science and Statistics: Proc. 23rd Conf. on the Interface, E.M. Keramidas, ed., Interface Foundation of North America: Fairfax Station, VA, 1991, pp. 550–557.

    Google Scholar 

  14. U. Grenander, Y. Chow, and D. Keenan,Hands: A Pattern Theoretic Study of Biological Shapes, Springer-Verlag: Berlin, 1991.

    Google Scholar 

  15. F.L. Bookstein and W. Jaynes, “Thin-Plate Splines and the Analysis of Biological Shape,” Biomedical Communications, Univ. of Michigan, videotape BMC 650, 1990; also presented at 1st Conf. on Visualization in Biomedical Computing, Atlanta, GA, May 1990.

  16. F.L. Bookstein,Morphometric Tools for Landmark Data, Cambridge University Press: New York, 1991, appendix 1.3.

    Google Scholar 

  17. F.L. Bookstein, “Thin-plate splines and the atlas problem for biomedical images,” inInformation Processing in Medical Imaging, A.C.F. Colchester and D. Hawkes, eds., Springer-Verlag: Berlin, 1991, pp. 326–342.

    Google Scholar 

  18. A.C. Evans, W. Dai, L. Collins, P. Neelin, and S. Marrett, “Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuranatomical and functional analysis,”Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1445, pp. 236–246, 1991.

    Google Scholar 

  19. P.H.A. Sneath, “Trend-surface analysis of transformation grids,”J. Zool., vol. 151, pp. 65–122, 1967.

    Google Scholar 

  20. T. Greitz, C. Bohm, S. Holte, and L. Eriksson, “A computerized brain atlas: construction, anatomical content, and some applications,”J. Comput Assist. Tomog., vol. 15, pp. 26–38, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bookstein, F.L., Green, W.D.K. A feature space for edgels in images with landmarks. J Math Imaging Vis 3, 231–261 (1993). https://doi.org/10.1007/BF01248355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01248355

Key words

Navigation