Skip to main content
Log in

Fay's trisecant identity and conformal field theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the correlation functions of a system of free chiral fermions on a compact Riemann surface using techniques of algebraic geometry. Fay's trisecant identity arises as a consequence of the proof of the uniqueness of correlation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fay, J.D.: Theta functions on Riemann surfaces. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  2. Mumford, D.: Tata lectures on Theta. II. Boston, Basel, Stuttgart: Birkhäuser 1984

    Google Scholar 

  3. Arbarello, E.: Fay's trisecant formula and a characterization of Jacobian varieties, Rome preprint 1987

  4. Beauville, A.: Le problème de Schottky et la conjecture de Novikov. Séminaire Bourbaki no. 675: Astérisque152–153, 101–112 (1987); and references therein

    Google Scholar 

  5. Eguchi, T., Ooguri, H.: Chiral bosonization on a Riemann surface. Phys. Lett. B187, 127–134 (1987)

    Google Scholar 

  6. Verlinde, E., Verlinde, H.: Chiral bosonization, determinants and the string partition function. Nucl. Phys. B288, 357–396 (1987)

    Google Scholar 

  7. Witten, E.: Quantum field theory. Grassmannians, and algebraic curves. Commun. Math. Phys.113, 529–600 (1988)

    Google Scholar 

  8. Sen, S., Raina, A.K.: Grassmannians, multiplicative Ward identities and theta function identities. Phys. Lett. B203, 256–262 (1988)

    Google Scholar 

  9. Raina, A.K.: The divisor group and multiplicative Ward identities in conformal field theory. In: Superstring theory. Ramachandran, R., Mani, H.S. (eds.). Singapore: World Scientific 1988

    Google Scholar 

  10. Friedan, D., Martinec, E., Shenker, S.: Conformal invariance, supersymmetry, and string theory. Nucl. Phys. B271, 93–165 (1986)

    Google Scholar 

  11. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978

    Google Scholar 

  12. Hartshorne, R.: Algebraic geometry. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  13. Atiyah, M.F.: Riemann surfaces and spin structures. Ann. Sci. Ecole Norm. Sup.4, 47–62 (1971)

    Google Scholar 

  14. Narasimhan, M.S., Ramanan, S.: Moduli of vector bundles on a compact Riemann surface. Ann. Math.89, 14–51 (1969)

    Google Scholar 

  15. Mumford, D.: Abelian varieties. Second Edition. Bombay, London: T.I.F.R. and Oxford University Press 1974

    Google Scholar 

  16. Shafarevich, I.R.: Basic algebraic geometry. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  17. Bredon, G.E.: Sheaf theory. New York: McGraw-Hill 1967

    Google Scholar 

  18. Clemens, C.H.: A Scrapbook of complex curve theory. New York, London: Plenum Press 1980

    Google Scholar 

  19. Namazie, M.A., Narain, K.S. Sarmadi, M.H.: Fermionic string loop amplitudes with external bosons. Phys. Lett. B177, 329–334 (1986);

    Google Scholar 

  20. Sonoda, H.: Calculation of a propagator on a Riemann surface. Phys. Lett. B178, 390–394 (1986)

    Google Scholar 

  21. Bochner, S., Martin, W.T.: Several complex variables. Princeton, NJ: Princeton University Press 1948

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Fröhlich

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, A.K. Fay's trisecant identity and conformal field theory. Commun.Math. Phys. 122, 625–641 (1989). https://doi.org/10.1007/BF01256498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01256498

Keywords

Navigation