Skip to main content
Log in

A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex

  • Published:
Journal of Neurocytology

Summary

Lesion-induced degeneration was combined with the retrograde transport of horseradish peroxidase (HRP) to examine the thalamocortical and other synaptical relationships of corticothalamic projection cells in mouse SmI cortex. Injections containing 40% HRP were placed in the ventrobasal thalamus and the next day, electrolytic lesions were made of the injection site. About four days later, the animals were perfused with aldehydes and SmI cortex ipsilateral to the injection and lesion sites was tissue chopped and reacted for HRP. The somata of HRP-filled corticothalamic cells in SmI cortex had diameters of about 10 μm and occurred in the upper half of layer VI and in the lower half of layer V; their apical dendrites usually terminated within or just below layer IV, but in some instances, extended nearly to the pial surface. Reconstructions of serial thin sections through the layer IV portions of the apical dendrites of seven well-labelled corticothalamic cells showed them to form 7 to 20% of their synapses with degenerating thalamocortical axon terminals. In contrast, the proportion of thalamocortical synapses formed by the layer IV dendrites of corticostriatal (Hersch & White, in preparation) and corticocortical (White & Hersch, 1981) projection cells ranges from 0.3 to 0.9% and from 1.5 to 6.8%, respectively. We interpret these findings to indicate that pyramidal cell dendrites are specified to form characteristic proportions of thalamocortical synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. C. (1977) Technical considerations on the use of horseradish peroxidase as a neuronal marker.Neuroscience 2, 141–5.

    PubMed  Google Scholar 

  • Andersen, R. A., Knight, P. L. &Merzenich, M. M. (1980) The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: Evidence for two largely segregated systems of connections.Journal of Comparative Neurology 194, 663–701.

    PubMed  Google Scholar 

  • Caviness, V. S. &Frost, D. O. (1980) Tangential organization of thalamic projections to the neocortex in the mouse.Journal of Comparative Neurology 194, 335–67.

    PubMed  Google Scholar 

  • Christensen, B. N. &Ebner F. F. (1978) The synaptic architecture of neurons in opossum somatic sensory-motor cortex: a combined anatomical and physiological study.Journal of Neurocytology 7, 39–60.

    PubMed  Google Scholar 

  • Colonnier, M. (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscopic study.Brain Research 9, 268–87.

    PubMed  Google Scholar 

  • Colwell, S. A. (1979) Thalamocortical-corticothalamic reciprocity: A combined anterograde-retrograde tracer technique.Brain Research 92, 443–9.

    Google Scholar 

  • Davis, T. L. &Sterling, P. (1979) Microcircuitry of cat visual cortex: classification of neurons in layer IV of area 17, and identification of the patterns of lateral geniculate input.Journal of Comparative Neurology 188, 599–628.

    PubMed  Google Scholar 

  • Frost, D. O. &Caviness, V. S. (1980) Radial organization of thalamic projections to the neocortex in the mouse.Journal of Comparative Neurology 194, 369–93.

    PubMed  Google Scholar 

  • Gilbert, C. D. &Kelly, J. P. (1975) The projections of cells in different layers of the cat's visual cortex.Journal of Comparative Neurology 163, 81–106.

    PubMed  Google Scholar 

  • Gilbert, C. D. &Wiesel, T. N. (1981) Laminar specialization and intracortical connections in cat primary visual cortex. InThe Organization of the Cerebral Cortex (edited bySchmitt, F. O. etal.), pp. 163–91. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • Hendry, S. H. C. &Jones, E. G. (1980) Electron microscopic demonstration of thalamic axon terminations on identified commissural neurons in monkey sensory cortex.Brain Research 196, 253–7.

    PubMed  Google Scholar 

  • Hersch, S. M. &White, E. L. (1981a) Thalamocortical synapses involving identified neurons in mouse primary somatosensory cortex: A terminal degeneration and Golgi/EM Study.Journal of Comparative Neurology 195, 253–63.

    PubMed  Google Scholar 

  • Hersch, S. M. &White, E. L. (1981b) Quantification of synapses formed with apical dendrites of Golgi-impregnated pyramidal cells: Variability in thalamocortical inputs, but consistency in the ratios of asymmetrical synapses.Neuroscience 6, 1043–51.

    PubMed  Google Scholar 

  • Hersch, S. M. &White, E. L. (1981c) Thalamocortical synapses with corticothalamic projection neurons in mouse SmI cortex: Electron microscopic demonstration of a monosynaptic feedback loop.Neuroscience Letters 24, 207–10.

    PubMed  Google Scholar 

  • Hornung, J. P. &Garey L. J. (1980) A direct pathway from the thalamus to visual callosal neurons in cat.Experimental Brain Research 38, 121–3.

    Google Scholar 

  • Jacobson, S. &Trojanowski, J. Q. (1975) Corticothalamic neurons and thalamocortical fields: An investigation in rat using horseradish peroxidase and autoradiography.Brain Research 85, 385–401.

    PubMed  Google Scholar 

  • Jones, E. G. &Powell, T. P. S. (1970) Electron microscopy of the somatic sensory cortex of the cat. I. Cell types and synaptic organization.Philosophical Transactions of the Royal Society of London Series B 257, 1–11.

    PubMed  Google Scholar 

  • Jones, E. G. &Wise, S. P. (1977) Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of primates.Journal of Comparative Neurology 175, 391–438.

    PubMed  Google Scholar 

  • Kaitz, S. S. &Robertson, R. T. (1981) Thalamic connections with limbic cortex II. Corticothalamic projections.Journal of Comparative Neurology 195, 527–45.

    PubMed  Google Scholar 

  • Kane, E. C. (1973) Octopus cells in the cochlear nucleus of the cat: heterotypic synapses upon homeotypic neurons.International Journal of Neurosdence 5, 251–79.

    Google Scholar 

  • Kelly, J. P. &Wong, D. (1981) Laminar projections of the cat's auditory cortex.Brain Research 212, 1–15.

    PubMed  Google Scholar 

  • LeVay, S. (1973) Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations.Journal of Comparative Neurology 150, 53–86.

    PubMed  Google Scholar 

  • Lund, J. S., Henry, G. H., MacQueen, C. L. &Harvey A. R. (1979) Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 in the macaque monkey.Journal of Comparative Neurology 184, 599–618.

    PubMed  Google Scholar 

  • Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H. &Fuchs, A. F. (1975) The origin of efferent pathways from the primary visual cortex area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase.Journal of Comparative Neurology 164, 287–303.

    Google Scholar 

  • Nelson, R. J. &Kaas, J. H. (1981) Connections of the ventroposterior nucleus of the thalamus with the body surface representation in cortical areas 3b and 1 of the cynomolgus macaque (Macaca fascicularis).Journal of Comparative Neurology 199, 29–64.

    PubMed  Google Scholar 

  • Parnavelas, J. G., Sullivan, K., Lieberman, A. R. &Webster, K. E. (1977) Neurons and their synaptic organization in the visual cortex of the rat.Cell and Tissue Research 183, 499–517.

    PubMed  Google Scholar 

  • Peters, A. &Kaiserman-Abramof, I. R. (1969) The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines.American Journal of Anatomy 127, 321–56.

    Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. deF. (1976)The fine Structure of the Nervous System. The Neurons and Supporting Cells. Philadelphia: W. B. Saunders Co.

    Google Scholar 

  • Peters, A., Proskauer, C. C., Feldman, M. L. &Kimerer, L. (1979) The projection of lateral geniculate nucleus to area 17 of the rat cerebral cortex. V. Degenerating axon terminals synapsing with Golgi-impregnated neurons.Journal of Neurocytology 8, 331–57.

    PubMed  Google Scholar 

  • Peters, A. &Saldanha, J. (1976) The projection of lateral geniculate nucleus to area 17 of the rat. III. Layer VI.Brain Research 105, 533–7.

    PubMed  Google Scholar 

  • Peters, A., White, E. L. &Fairen, A. (1977) Synapses between identified neuronal elements. An electron microscopic demonstration of degenerating axon terminals synapsing with Golgi-impregnated neurons.Neuroscience Letters 6, 171–5.

    Google Scholar 

  • Ravizza, R. J., Straw, R. B. &Long, P. D. (1976) Laminar origin of efferent projections from auditory cortex in the golden Syrian hamster.Brain Research 114, 497–500.

    PubMed  Google Scholar 

  • Robson, J. A. &Hall, W. C. (1975) Connections of layer VI in striate cortex of the grey squirrel (Sciurus carolinensis).Brain Research 93, 133–9.

    PubMed  Google Scholar 

  • Romagnano, M. A. &Maciewicz, R. J. (1975) Peroxidase labelling of motor cortex neurons projecting to ventrolateral nucleus in the cat.Brain Research 83, 469–73.

    PubMed  Google Scholar 

  • Sidman, R. L., Angevine, Jr., J. B. &Pierce, E. T. (1971)Atlas of the Mouse Brain and Spinal Cord. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Sloper, J. J. &Powell, T. P. S. (1979) A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices.Philosophical Transaction of the Royal Society of London Series B 285, 173–97.

    Google Scholar 

  • Somogyi, P. (1978) The study of Golgi stained cells and of experimental degeneration under the electron microscope: A direct method for the identification in the visual cortex of three successive links in a neuron chain.International Journal of Neuroscience 3, 167–80.

    Google Scholar 

  • Symonds, L. L. &Kaas, J. H. (1978) Connections of striate cortex in the prosimian,Galago senegalensis.Journal of Comparative Neurology 181, 477–512.

    PubMed  Google Scholar 

  • Tigges, J., Tigges, M. &Perachio, A. A. (1977) Complementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey.Journal of Comparative Neurology 176, 87–100.

    PubMed  Google Scholar 

  • Van Der Loos, H. (1976) Barreloids in mouse somatosensory thalamus,Neuroscience Letters 2, 1–6.

    Google Scholar 

  • White, E. L. (1978) Identified neurons in mouse SmI cortex which are postsynaptic to thalamocortical axon terminals: a combined Golgi-electron microscope and degeneration study.Journal of Comparative Neurology 181, 627–62.

    PubMed  Google Scholar 

  • White, E. L. (1979) Thalamocortical synaptic relations: a review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex.Brain Research Reviews 1, 275–311.

    Google Scholar 

  • White, E. L. (1981) Thalamocortical synaptic relations.The Organization of the Cerebral Cortex (edited bySchmitt, F. O. et al.), pp. 153–61. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • White, E. L. &DeAmicis, R. A. (1977) Afferent and efferent projections of the region in mouse SmI cortex which contains the posteromedial barrel subfield.Journal of Comparative Neurology 175, 455–81.

    Google Scholar 

  • White, E. L., Hersch, S. M. &Rock, M. L. (1980) Synaptic sequences in mouse SmI cortex involving pyramidal cells labelled by retrograde filling with horseradish peroxidase.Neuroscience Letters 19, 149–54.

    PubMed  Google Scholar 

  • White, E. L. &Hersch, S. M. (1981) Thalamocortical synapses of pyramidal cells which project from SmI to MsI cortex in the mouse.Journal of Comparative Neurology 198, 167–81.

    PubMed  Google Scholar 

  • White, E. L. &M. P. Rock (1979) Distribution of thalamic input to different dendrites of a spiny stellate cell.Neuroscience Letters 15, 115–9.

    PubMed  Google Scholar 

  • White, E. L. &Rock M. P. (1980) Three-dimensional aspects and synaptic relationships of a Golgi-impregnated spiny stallate cell reconstructed from serial thin sections.Journal of Neurocytology 9, 615–36.

    Google Scholar 

  • White, E. L. &Rock, M. P. (1981) A comparison of thalamocortical and other synaptic inputs to dendrites of two non-spiny neurons in a single barrel of mouse SmI cortex.Journal of Comparative Neurology 195, 265–77.

    PubMed  Google Scholar 

  • Winfield, D. A., Gatter, K. C. &Powell, T. P. S. (1980) An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat.Brain 103, 245–58.

    PubMed  Google Scholar 

  • Wise, S. P. (1975) The laminar organization of certain afferent and efferent fibre systems in the rat somatosensory cortex.Brain Research 90, 139–42.

    PubMed  Google Scholar 

  • Wise, S. P. &Jones, E. G. (1977) Cells of origin and terminal distribution of corticofugal pathways from the rat somatic sensory cortex.Journal of Comparative Neurology 175, 129–58.

    Google Scholar 

  • Woolsey, T. A. (1978) Some anatomical bases for cortical somatotopic organization.Brain Behaviour and Evolution 15, 325–71.

    Google Scholar 

  • Woolsey, T. A. &Van Der Loos, H. (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex.Brain Research 17, 205–42.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, E.L., Hersch, S.M. A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex. J Neurocytol 11, 137–157 (1982). https://doi.org/10.1007/BF01258009

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01258009

Keywords

Navigation