Skip to main content
Log in

On the structure of the rate equations of materials with internal variables

Zur Form der Geschwindigkeitsgleichungen für Werkstoffe mit inneren Zustandsvariablen

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Rate equations for internal variables are not invariant under transformations to other sets of internal variables if such transformations involve the external variables (deformation, temperature), unless the rate equations include the rates of the external variables as well. The simplest invariant rate equations are linear in the external-variable rates; for materials with such rate equations, thermodynamic relations are studied, and conditions are obtained for the reducibility of such rate equations to a form without external-variable rates. Materials with plastic behavior have rate equations that are piecewise linear in the external-variable rates, and thermodynamic relations for such materials are studied as well.

Zusammenfassung

Geschwindigkeitsgleichungen der inneren Zustandsvariablen sind nicht invariant gegen Transformation auf andere innere Zustandsvariable, wenn diese Transformation äußere Zustandsvariable (Deformation, Temperatur) einschließt, außer die Geschwindigkeitsgleichungen enthalten auch Ableitungen äußerer Zustandsvariablen nach der Zeit. Die einfachsten invarianten Geschwindigkeitsgleichungen sind linear in den Ableitungen der äußeren Zustandsvariablen. Für durch solche Gleichungen beschreibbare Werkstoffe werden thermodynamische Beziehungen untersucht und Bedingungen für die Reduzierbarkeit dieser Geschwindigkeitsgleichungen auf Formen, die keine Ableitungen äußerer Zustandsvariablen enthalten, abgeleitet. Werkstoffe mit plastischem Verhalten besitzen Geschwindigkeitsgleichungen, die abschnittsweise linear in den Ableitungen der äußeren Zustandsvariablen sind. Thermodynamische Beziehungen solcher Stoffe werden ebenfalls untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kestin, J., andJ. R. Rice: Paradoxes in the application of thermodynamics to strained solids, in: A Critical Review of Thermodynamics (Stuart, E. B. et al., eds.), pp. 275–298. Baltimore: Mono Book Corp. 1970.

    Google Scholar 

  2. Coleman, B. D.: Thermodynamics of materials with memory. Arch. Rat. Mech. Anal.17, 1–46 (1964).

    Google Scholar 

  3. Volterra, V.: Theory of Functionals. New York: Dover. 1959.

    Google Scholar 

  4. Ziegler, H.: An attempt to generalise Onsager's principle, and its significance for rheological problems. Z. Angew. Math. Phys.9b, 748–763 (1958).

    Google Scholar 

  5. Schapery, R. A.: Application of thermodynamics to thermomechanical fracture and birefringent phenomena in viscoelastic media. J. Appl. Phys.35, 1451–1465 (1964).

    Google Scholar 

  6. Valanis, K. C.: Thermodynamics of large viscoelastic deformations. J. Math. Phys.45, 197–212 (1966).

    Google Scholar 

  7. Coleman, B. D., andM. E. Gurtin: Thermodynamics with internal state variables. J. Chemical Phys.47, 597–613 (1967).

    Google Scholar 

  8. Valanis, K. C.: Entropy, fading memory and Onsager's relations. J. Math. Phys.46, 164–174 (1967).

    Google Scholar 

  9. Lubliner, J.: On fading memory in materials of evolutionary type. Acta Mech.8, 75–81 (1969).

    Google Scholar 

  10. Lubliner, J.: On the thermodynamic foundations of non-linear solid mechanics. Int. J. Non-Lin. Mech.7, 237–254 (1972).

    Google Scholar 

  11. Green, M. S., andA. V. Tobolsky: A new approach to the theory of relaxing polymeric media. J. Chemical Phys.14, 80–92 (1946).

    Google Scholar 

  12. Schapery, R. A.: Further development of a thermodynamic constitutive theory: stress formulation. Report AA & ES 69-2, Purdue University, Lafayette, Ind., 1969.

    Google Scholar 

  13. Truesdell, C., andW. Noll: The Non-Linear Field Theories of Mechanics, in: Handbuch der Physik (Flügge, S., ed.), Vol. III/3. Berlin-Heidelberg-New York: Springer. 1965.

    Google Scholar 

  14. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes, 3rd ed., p. 93. New York: Interscience. 1967.

    Google Scholar 

  15. Bogy, D. B., andP. M. Naghdi: On heat conduction and wave propagation in rigid solids. J. Mathematical Phys.11, 917–923 (1970).

    Google Scholar 

  16. Perzyna, P.: The constitutive equations for rate-sensitive plastic materials. Q. Appl. Math.20, 321–332 (1963).

    Google Scholar 

  17. Perzyna, P.: On thermodynamic foundations of viscoplasticity, in: Mechanical Behavior of Materials under Dynamic Loads (Lindholm, U. S., ed.), pp. 61–76. New York: Springer 1968.

    Google Scholar 

  18. Green, A. E., andP. M. Naghdi: A general theory of an elastic-plastic continuum. Arch. Rat. Mech. Anal.18, 251–281 (1965).

    Google Scholar 

  19. Eisenberg, M. A., andA. Phillips: A theory of plasticity with non-coincident yield and loading surfaces. Acta Mech.11, 247–260 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubliner, J. On the structure of the rate equations of materials with internal variables. Acta Mechanica 17, 109–119 (1973). https://doi.org/10.1007/BF01260883

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01260883

Keywords

Navigation