Skip to main content
Log in

Stimulation of fat-body production in the polyps of the coralPocillopora damicornis by the presence of mutualistic crabs of the genusTrapezia

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A mutualism exists between the xanthid crabs of the genusTrapezia and their host corals,Pocillopora damicornis. It has previously been established that these obligate coral residents benefit the coral hosts by defending them against echinoderm predators and by increasing the survival of polyps located deep between the coral branches. In turn, the corals apparently benefit the crabs by producing lipid-filled structures on which the trapezid crabs feed; these fat bodies may contain some of the lipid which in previous studies of coral metabolism has been termed “excess”. It was determined by experiments conducted at the Hawaii Institute of Marine Biology that the presence of crabs in colonies ofP. damicornis stimulates the polyps to produce the lipid-filled fat bodies; removal of crabs causes corals to cease producing fat bodies. A structure very similar to the fat bodies ofP. damicornis has been reported inAcropora durvillei. Both of these coral genera ordinarily possess xanthid-crab mutualists. This association between branching corals and crustaceans may have evolved because corals of these genera provide shelter among their branches and because these shallow-water corals are evidently capable of releasing lipid which is excess to the corals' metabolic needs, but which can be utilized by the crabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Barnes, J., Bellamy, D. J., Jones, D. J., Whitton, B. A., Drew, E. A., Kenyon, L., Lythgoe, J. N., Rosen, B. T. (1971). Morphology and ecology of the reef front of Aldabra. Symp. zool. Soc. Lond. 28: 87–114

    Google Scholar 

  • Benson, A. A., Muscatine, L. (1974). Wax in coral mucus: energy transfer from corals to reef fishes. Limnol. Oceanogr. 19: 810–814

    Google Scholar 

  • Benson, A. A., Patton, J. S., Abraham, S. (1978). Energy exchange in coral reef ecosystems. Atoll Res. Bull. 220: 33–54

    Google Scholar 

  • Bergman, W., Creighton, S. M., Stokes, W. M. (1956). Contributions to the study of marine products. XL. Waxes and triglycerides of sea anemones. J. org. Chem. 21: 721–728

    Google Scholar 

  • Blanquet, R. S., Nevenzel, J. C., Benson, A. A. (1979). Acetate incorporation into the lipids of the anemoneAnthopleura elegantissima and its associated zooxanthellae. Mar. Biol. 54: 185–194

    Google Scholar 

  • Crossland, C. J. (1987). In situ release of mucus and DOC-lipid from the coralsAcropora variabilis andStylophora pistillata in different light regimes. Coral Reefs 6: 35–42

    Google Scholar 

  • Crossland, C. J., Barnes, D. J., Borowitzka, M. A. (1980a). Diurnal lipid and mucus production in the staghorn coralAcropora acuminata. Mar. Biol. 60: 81–90

    Google Scholar 

  • Crossland, C. J., Barnes, D. J., Cox, T., Devereux, M. (1980b). Compartmentation and turnover of organic carbon in the staghorn coralAcropora formosa. Mar. Biol. 59: 181–187

    Google Scholar 

  • Daumas, R. R., Galois, R., Thomassin, B. A. (1982). Biochemical composition of soft and hard coral mucus on a New Caledonian lagoonal reef. Proc. 4th int. Symp. coral Reefs 2: 59–67. [Gomez, E. D., et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]

    Google Scholar 

  • Daumas, R., Thomassin, B. A. (1977). Protein fractions in coral and zoantharian mucus, possible evolution in coral reef environment. Proc. 3rd int. Symp. coral Reefs 1: 517–523. [Taylor, D. L. (ed.) School of Marine and Atmospheric Sciences, University of Miami, Miami]

    Google Scholar 

  • Davies, P. S. (1984). The role of zooxanthellae in the nutritional energy requirements ofPocillopora eydouxi. Coral Reefs 2: 181–186

    Google Scholar 

  • Dollar, S. (1982). Wave stress and coral community structure in Hawaii. Coral Reefs 1: 71–81

    Google Scholar 

  • Ducklow, H. W., Mitchell, R. (1979a). Composition of mucus released by coral reef coelenterates. Limnol. Oceanogr. 24: 706–714

    Google Scholar 

  • Duckow, H. W., Mitchell, R. (1979b). Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr. 24: 715–725

    Google Scholar 

  • Edwards, A., Emberton, H. (1980). Crustacea associated with the scleractinian coralStylophora pistillata (Esper) in the Sudanese Red Sea. J. exp. mar. Biol. Ecol. 42: 225–240

    Google Scholar 

  • Falkowski, P. G., Dubinsky, Z., Muscatine, L., Porter, J. W. (1984). Light and the bioenergetics of a symbiotic coral. BioSci. 34: 705–709

    Google Scholar 

  • Fowler, G. H. (1887). The anatomy of the Madreporaria: II. Q. Jl microsc. Sci. 27: 1–16

    Google Scholar 

  • Glynn, P. W. (1976). Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol. Monogr. 46: 431–455

    Google Scholar 

  • Glynn, P. W. (1983a). Increased survivorship in corals harboring crustacean symbionts. Mar. Biol. Lett. 4: 105–111

    Google Scholar 

  • Glynn, P. W. (1983b). Crustacean symbionts and the defense of corals: coevolution of the reef? In: Nitecki, M. H. (ed.) Coevolution. University of Chicago Press, Chicago, p. 111–178

    Google Scholar 

  • Gotelli, N. J., Abele, L. G. (1983). Community patterns of coral-associated decapods. Mar. Ecol. Prog. Ser. 13: 131–139

    Google Scholar 

  • Gotelli, N. J., Gilchrist, S. L., Abele, L. G. (1985). Population biology ofTrapezia spp. and other coral-associated decapods. Mar. Ecol. Prog. Ser. 21: 89–98

    Google Scholar 

  • Highsmith, R. C. (1982). Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7: 207–226

    Google Scholar 

  • Hosai, K. (1947). Contribution to the biochemistry of the coral. X. A note on the comparative physiology of the coralFungia actiniformis var.palawensis Doderlein. Sci. Rep. Tôhoku Univ. (Ser. 4) 18: 85–87

    Google Scholar 

  • Janzen, D. (1966). Coevolution of mutualism between ants and acacias in Central America. Evolution, Lawrence, Kansas 20: 249–275

    Google Scholar 

  • Johannes, R. E. (1967). Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr. 12: 189–195

    Google Scholar 

  • Jokiel, P. L., Maragos, J. E., Franzisket, L. (1978). Coral growth: buoyant weight technique. In: Stoddart, D. R., Johannes R. E. (eds.) Coral reefs: research methods. UNESCO, Paris, France, p. 529–541

    Google Scholar 

  • Knudsen, J. W. (1967).Trapezia andTetralia (Decapoda, Brachyura, Xanthidae) as obligate ectoparasites of pocilloporid and acroporid corals. Pacif. Sci. 21: 51–57

    Google Scholar 

  • Keeler, K. H. (1981). A model of selection for facultative non-symbiotic mutualism. Am. Nat. 118: 488–498

    Google Scholar 

  • Krupp, D. (1982). The composition of the mucus from the mushroom coral,Fungia scutaria. Proc. 4th int. Symp. coral Reefs 2: 69–73. [Gomez, E. D., et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]

    Google Scholar 

  • Luna, L. G. (1968). Manual of histological staining methods. 3rd ed. McGraw-Hill, New York

    Google Scholar 

  • McCloskey, L. R., Muscatine, L. (1984). Production and respiration in the Red Sea coralStylophora pistillata as a function of depth. Proc. R. Soc. (Ser. B) 222: 215–230

    Google Scholar 

  • Meyers, P. A. (1977). Fatty acids and hydrocarbons of Caribbean corals. Proc. 3rd int. Symp. coral Reefs 1: 529–539. [Taylor, D. L. (ed.) School of Marine and Atmospheric Sciences, University of Miami, Miami]

    Google Scholar 

  • Muscatine, L., Cernichiari, E. (1969). Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. mar. biol. Lab., Woods Hole 137: 506–523

    Google Scholar 

  • Muscatine, L., Falkowski, P. G., Porter, J. W., Dubinsky, Z. (1984). Fate of photosynthetic fixed carbon in light and shade-adapted colonies of the symbiotic coralStylophora pistillata. Proc. R. Soc. (Ser. B) 222: 181–202

    Google Scholar 

  • Muscatine, L., McCloskey, L. R., Loya, Y. (1985). A comparison of the growth rates of zooxanthellae and animal tissue in the Red Sea coralStylophora pistillata. Proc. 5th int. coral Reef Congr. 6: 119–123. [Gabrié, C., et al. (eds.) Antenne Museum-EPHE, Moorea, French Polynesia]

    Google Scholar 

  • Patton, J. S., Abraham, S., Benson, A. A. (1977). Lipogenesis in the intact coralPocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar. Biol. 44: 235–247

    Google Scholar 

  • Pearson, R. G., Endean, R. (1969). A preliminary study of the coral predatorAcanthaster planci (L.) (Asteroidea) on the Great Barrier Reef. Fisheries Notes (Department of Harbours and Marine, Queensland) 3: 27–68 (not seen, cited after Glynn 1983b)

    Google Scholar 

  • Reed, J. K., Gore, R. H., Scotto, L. E., Wilson, K. A. (1982). Community composition, structure, areal and trophic relationships of decapods associated with shallow- and deep-waterOculina varicosa coral reefs. Bull. mar. Sci. 32: 761–786

    Google Scholar 

  • Richman, S., Loya, Y., Slobodkin, L. B. (1975). The rate of mucus production by corals and its assimilation by the coral reef copepodAcartia negligens. Limnol. Oceanogr. 20: 918–923

    Google Scholar 

  • Richmond, R. H., Jokiel, P. L. (1984). Lunar periodicity in larva release in the reef coralPocillopora damicornis at Enewetak and Hawaii. Bull. mar. Sci. 34: 280–287

    Google Scholar 

  • Rosen, B. R. (1975). The distribution of reef corals. Rep. Underwat. Ass. (N.S.) 1: 1–16

    Google Scholar 

  • Sheppard, C. R. C. (1980). Coral cover, zonation and diversity on reef slopes of Chagos atolls, and population structures of the major species. Mar. Ecol. Prog. Ser. 2: 193–205

    Google Scholar 

  • Stimson, J. S. (1984). Possible uses of lipids stored in coral tissues. (Abstract No. 429) Am. Zool. 24: p. 78A

    Google Scholar 

  • Stimson, J. S. (1987). Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull. mar. Sci. 41: 889–904

    Google Scholar 

  • Weber, J. N. Woodhead, P. M. J. (1970). Ecological studies of the coral predatorAcanthaster planci in the South Pacific. Mar. Biol. 6: 12–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. C. Schroeder, Pullman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stimson, J. Stimulation of fat-body production in the polyps of the coralPocillopora damicornis by the presence of mutualistic crabs of the genusTrapezia . Mar. Biol. 106, 211–218 (1990). https://doi.org/10.1007/BF01314802

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314802

Keywords

Navigation