Skip to main content
Log in

An empirical constitutive equation of integral type for viscoelastic liquids

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A 5-constant constitutive equation is proposed. The analytical form for the relaxation modulus as a function of flow conditions was chosen based on experimental data for stress-relaxation in solid polymers. The resulting formulae for the material functions in simple and oscillatory shear flow fulfil the empirical Cox-Merz rule as well as other phenomenological relations formulated by Coleman and Markowitz. The theoretical results are compared with experimental data obtained by Han for various polymer melts. Good agreement between theory and experiment is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Truesdell C, Noll W (1965) The Non-linear Field Theories of Mechanics. Encyclopedia of Physics, vol III/3. Springer, Berlin, p 92

    Google Scholar 

  2. Coleman BD, Markowitz H, Noll W (1966) Viscometric Flows of Non-Newtonian Fluids. Springer, Berlin

    Google Scholar 

  3. Astarita G, Marucci G (1974) Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London

    Google Scholar 

  4. Spriggs TW, Huppler JD, Bird RB (1966) Trans Soc Rheol 10:191

    Google Scholar 

  5. Bernstein B, Kearsley EA, Zapas LJ (1963) Trans Soc Rheol 7:391

    Google Scholar 

  6. Tanner RI, Simmons JM (1967) Chem Eng Sci 22:1803

    Google Scholar 

  7. Meister BJ (1971) Trans Soc Rheol 15:63

    Google Scholar 

  8. Bird RB, Carreau PJ (1968) Chem Eng Sci 23:487

    Google Scholar 

  9. Chen I, Bogue DC (1972) Trans Soc Rheol 16:59

    Google Scholar 

  10. Carreau PJ (1972) Trans Soc Rheol 16:99

    Google Scholar 

  11. Pao YH (1957) J Appl Phys 28:591

    Google Scholar 

  12. Vinogradov GV, Malkin AYa (1980) Rheology of Polymers. Mir Publishers, Moscow

    Google Scholar 

  13. Oldroyd JG (1950) Proc Roy Soc A 200:45

    Google Scholar 

  14. Walters K (1960) Quart J Mech Appl Math 13:444

    Google Scholar 

  15. Fredrickson AG (1962) Chem Eng Sci 17:155

    Google Scholar 

  16. Smith TL (1971) J Polym Sci Part C No 35:39

    Google Scholar 

  17. Bird RB, Armstrong RC, Hassager O (1977) Dynamics of Polymeric Liquids, vol 1. Wiley, New York

    Google Scholar 

  18. Han CD (1976) Rheology in Polymer Processing. Academic Press, New York

    Google Scholar 

  19. Han CD, Kim KU, Siscovic N, Huang CR (1975) Rheol Acta 14:533

    Google Scholar 

  20. Coleman BD, Markowitz H (1964) J Appl Phys 35:1

    Google Scholar 

  21. Cox WP, Merz EH (1958) J Polym Sci 28:619

    Google Scholar 

  22. Spriggs TW (1965) Chem Eng Sci 20:931

    Google Scholar 

  23. Bogue DC (1966) Ind Eng Chem Fund 5:253

    Google Scholar 

  24. Onogi S et al (1964) J Phys Chem 68:1598

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steller, R. An empirical constitutive equation of integral type for viscoelastic liquids. Rheol Acta 24, 541–546 (1985). https://doi.org/10.1007/BF01332585

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332585

Key words

Navigation