Skip to main content
Log in

The shear viscosity dependence on concentration, molecular weight, and shear rate of polystyrene solutions

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The solution viscosity of narrow molecular weight distribution polystyrene samples dissolved in toluene and trans-decalin was investigated. The effect of polymer concentration, molecular weight and shear rate on viscosity was determined. The molecular weights lay between 5 ⋅ 104 and 24 ⋅ 106 and the concentrations covered a range of values below and above the critical valuec *, at which the macromolecular coils begin to overlap. Flow curves were generated for the solutions studied by plotting logη versus log\(\dot \gamma \). Different molecular weights were found to have the same viscosity in the non-Newtonian region of the flow curves and follow a straight line with a slope of − 0.83. A plot of logη 0 versus logM w for 3 wt-% polystyrene in toluene showed a slope of approximately 3.4 in the high molecular weight regime. Increasing the shear rate resulted in a viscosity that was independent of molecular weight. The sloped (logη)/d (logM w ) was found to be zero for molecular weights at which the corresponding viscosities lay on the straight line in the power-law region.

On the basis of a relation betweenη sp and the dimensionless productc · [η], simple three-term equations were developed for polystyrene in toluene andt-decalin to correlate the zero-shear viscosity with the concentration and molecular weight. These are valid over a wide concentration range, but they are restricted to molar masses greater than approximately 20000. In the limit of high molecular weights the exponent ofM w in the dominant term in the equations for both solvents is close to the value 3.4. That is, the correlation betweenη sp andc · [η] results in a sloped(logη sp)/d(logc · [η]) of approximately 3.4/a at high values ofc · [η] wherea is the Mark-Houwink constant. This slope of 3.4/a is also the power ofc in the plot ofη 0 versusc at high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

Mark-Houwink constant

B 1,B 2,B n :

constants

c :

concentration (g · cm−3)

c * :

critical concentration (g · cm−3)

K, K′ :

constants

K H :

Huggins constant

M :

molecular weight

M c :

critical molecular weight

M n :

number-average molecular weight

M w :

weight-average molecular weight

n :

sloped(logη sp)/d (logc · [η]) at highc · [η]

PS :

polystyrene

T :

temperature (K)

\(\dot \gamma \) :

shear rate (s−1)

\(\dot \gamma \) :

critical shear rate (s−1)

η :

viscosity (Pa · s)

η 0 :

zero-shear viscosity (Pa · s)

η s :

solvent viscosity (Pa · s)

η sp :

specific viscosity

[η]:

intrinsic viscosity (cm3 · g−1)

η′ :

dynamic viscosity (Pa · s)

|η *|:

complex dynamic viscosity (Pa · s)

ω :

angular frequency (rad/s)

ϱ :

density of polymer solution (g · cm−3)

σ 12 :

shear stress (Pa)

References

  1. Kniewske R, Kulicke W-M (1983) Makromol Chem 184:2173

    Google Scholar 

  2. Kulicke W-M, Kniewske R, Klein J (1982) Progr Polym Sci 8:373

    Google Scholar 

  3. Graessley WW (1974) Adv Polym Sci 16:49

    Google Scholar 

  4. Doi M (1981) ACS Polymer Preprints 22/1:100

    Google Scholar 

  5. Masuda T, Kitagawa K, Onogi S (1970) Polymer J (Japan) 1:418

    Google Scholar 

  6. Kulicke W-M, Klare J (1980) Angew Makromol Chem 84:67

    Google Scholar 

  7. Casale A, Moroni A, Civardi E (1976) Angew Makromol Chem 53:1

    Google Scholar 

  8. Berry GC, Fox TG (1968) Adv Polym Sci 5:216–357

    Google Scholar 

  9. Casale A, Porter RS, Johnson JF (1971) J Macromol Sci-Rvs Macromol Chem C 5(2):387

    Google Scholar 

  10. Schurz J (1975) Rheol Acta 14:293

    Google Scholar 

  11. Frind H, Schramek W (1955) Makromol Chem 17:1

    Google Scholar 

  12. Schramek W (1955) Makromol Chem 17:19

    Google Scholar 

  13. Weissberg SG, Simha R, Rothman S (1951) J Research NBS 47:298

    Google Scholar 

  14. Onogi S, Kimura S, Kato T, Masuda T, Miyanaga N (1966) J Polym Sci C 15:381

    Google Scholar 

  15. Hayahara T, Takao S (1968) Kolloid-Z Z Polym 225:106

    Google Scholar 

  16. Hoftyzer PJ, van Krevelen DW (1976) Angew. Makromol Chem 56:1

    Google Scholar 

  17. Rudin A, Strathdee GB, Edey WB (1973) J Appl Polym Sci 17:3085

    Google Scholar 

  18. Rudin A, Strathdee GB (1974) J Paint Technol 46:33

    Google Scholar 

  19. Zakin JL, Wu R, Luh H, Mayhan KG (1976) J Polym Sci Polym Phys Ed 14:299

    Google Scholar 

  20. Abdel-Alim AH, Balke ST, Hamielec AE (1973) J Appl Polym Sci 17:1431

    Google Scholar 

  21. Attané P, LeRoy P, Picard JM, Turrel G (1981) J Non-Newtonian Fluid Mech 9:13

    Google Scholar 

  22. Ballauf M (1981) Thesis, Mainz

  23. Kulicke W-M, Porter RS (1981) J Polym Sci Polym Phys Ed 19:1173

    Google Scholar 

  24. Stratton RA (1966) J Colloid Interface Sci 22:517

    Google Scholar 

  25. Onogi S, Kato H, Ueki S, Ibaragi T (1966) J Polym Sci C 15:481

    Google Scholar 

  26. Onogi S, Masuda T, Ibaragi T (1968) Kolloid-Z Z Polym 222:110

    Google Scholar 

  27. Nielsen LE (1977) Polymer Rheology. Dekker M INC, New York, p 71

    Google Scholar 

  28. Vinogradov GV, Malkin AYa (1980) Rheology of Polymers, Springer-Verlag, Berlin, p 178 and p 185

    Google Scholar 

  29. Schurz J (1974) Struktur-Rheologie, Berliner Union Stuttgart, p 73

  30. Porter RS, Johnson JF (1963) Trans Soc Rheology 7:241

    Google Scholar 

  31. Han ChD (1976) Rheology in Polymer Processing, Academic Press, New York, p 71

    Google Scholar 

  32. Bird RB, Armstrong RC, Hassager O (1977) Dynamics of Polymeric Liquids, J. Wiley & Sons, New York, vol 1, p 145

    Google Scholar 

  33. Klein J, Kulicke W-M (1976) Rheol Acta 15:558

    Google Scholar 

  34. Chou LY, Zakin JL (1967) J Colloid Interface Sci 25:547

    Google Scholar 

  35. Gandhi KS, Williams MC (1971) J Polym Sci C 35:211

    Google Scholar 

  36. Onogi S, Masuda T, Miyanaga N, Kimure Y (1967) J Polym Sci A-2 5:899

    Google Scholar 

  37. Huggins ML (1942) J Amer Chem Soc 64:2716

    Google Scholar 

  38. Inagaki H, Suzuki H, Fujii M, Matsuo T (1966) J Phys Chem 70:1718

    Google Scholar 

  39. Onogi S, Kobayashi T, Kojima Y, Taniguchi Y (1963) J Appl Polym Sci 7:847

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. J. Schurz on the occasion of his 60th birthday.

Excerpt from the dissertation of Reinhard Kniewske: „Bedeutung der molekularen Parameter von Polymeren auf die viskoelastischen Eigenschaften in wäßrigen und nichtwäßrigen Medien“, Technische Universität Braunschweig 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulicke, W.M., Kniewske, R. The shear viscosity dependence on concentration, molecular weight, and shear rate of polystyrene solutions. Rheol Acta 23, 75–83 (1984). https://doi.org/10.1007/BF01333878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01333878

Key words

Navigation