Skip to main content
Log in

Effects of geometric imperfections on vibration of compressed shear deformable laminated composite curved panels

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The vibrational behavior of geometrically imperfect single and multilayered composite double-curved shallow panels subjected to a system of tangential compressive/tensile edge loads in the pre- and postbuckling ranges is investigated. The effects of transverse shear deformations, lamination, the character of in-plane boundary conditions, and of transverse normal stress are incorporated and their influence is emphasized.

Numerical illustrations enabling one to compare the obtained results based on higher order and first order shell theories with their classical counterparts, based on the Love-Kirchhoff model are presented and conclusions related to their range of applicability are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhimarradi, A.: Non-linear free vibration analysis of composite plates with initial imperfections and in-plane loadings. Int. J. Sol. Struct.25, 33–43 (1989).

    Google Scholar 

  2. Rosen, A., Singer, J.: Effect of axisymmetric imperfections on the vibrations of cylindrical shells under axial compression. AIAA J.12, 995–997 (1974).

    Google Scholar 

  3. Rosen, A., Singer, J.: Influence of asymmetric imperfections on the vibrations of axially compressed cylindrical shells. Israel J. Technol.14, 23–36 (1976).

    Google Scholar 

  4. Singer, J., Prucz, J.: Influence of initial geometrical imperfections on vibrations of axially compressed stiffened cylindrical shells. J. Sound Vibration80, 117–143 (1982).

    Google Scholar 

  5. Hui, D.: Influence of geometric imperfections and in-plane constraints on nonlinear vibrations of simply-supported cylindrical panels. J. Appl. Mech.51, 383–390 (1984).

    Google Scholar 

  6. Hui, D.: Effects of geometric imperfections on frequency-load interaction of biaxially compressed antisymmetric angle ply rectangular plates. J. Appl. Mech.52, 155–162 (1985).

    Google Scholar 

  7. Hui, D., Leissa, A. W.: Effects of geometric imperfections on vibrations of biaxially compressed rectangular flat plates. J. Appl. Mech.50, 750–756 (1983).

    Google Scholar 

  8. Elishakoff, I., Birman, V., Singer, J.: Small vibrations of an imperfect panel in the vicinity of a nonlinear static state. J. Sound Vibration114, 57–63 (1987).

    Google Scholar 

  9. Ilanko, S., Dickinson, S. M.: The vibration and post-buckling of geometrically imperfect, simply supported rectangular plates under uni-axial loading. Part I. Theoretical approach. J. Sound Vibration118, 313–336 (1987). Part II. Experimental investigation. J. Sound Vibration118, 337–351 (1987).

    Google Scholar 

  10. Liu, D. K., Arbocz, J.: Influence of initial geometric imperfections on undamped vibrations of thin circular cylindrical shells. Delft University of Technology, Report LR-457 (1986).

  11. Du, I., Hui, D.: Frequency-load interaction of imperfect angle-ply cylindrical panels under compression and pressure. AIAA J.25, 484–491 (1987).

    Google Scholar 

  12. Kapania, R. K., Yang, T. Y.: Buckling, postbuckling and nonlinear vibrations of imperfect plates. AIAA J.25, 1338–1346 (1987).

    Google Scholar 

  13. Heinen, J. W.: Vibration of geometrically imperfect beam and shell structures. Int. J. Sol. Struct.27, 29–47 (1991).

    Google Scholar 

  14. Heinen, J. W., Pedersen, P. T.: Vibrations of imperfect ship plating. The Danish Center for Applied Mathematics and Mechanics, The Technical University of Denmark, DCAMM Report No. 422, 1991.

  15. Elishakoff, I., Birman, V., Singer, J.: Effect of imperfections on the vibrations of loaded structures. J. Appl. Mech.51, 191–193 (1984).

    Google Scholar 

  16. Librescu, L., Khdeir, A. A., Reddy, J. N.: Further results concerning the dynamic response of shear deformable elastic orthotropic plates. Z. Angew. Math. Mech.70, 23–33 (1989).

    Google Scholar 

  17. Chandiramani, N. K., Librescu, L., Aboudi, J.: The theory of orthotropic viscoelastic shear deformable composite flat panels and their dynamic stability. Int. J. Sol. Struct.25, 465–482 (1989).

    Google Scholar 

  18. Librescu, L., Stein, M.: A geometrically nonlinear theory of transversely-isotropic laminated composite plates and its use in the postbuckling analysis. Thin Walled Structures, Special Issue of Aeronautical Structures11, 177–201 (1991).

    Google Scholar 

  19. Librescu, L., Chang, M. Y.: Post-buckling and imperfection sensitivity of shear deformable composite doubly-curved panels. Int. J. Sol. Struct. (in print).

  20. Arbocz, J.: Past, present and future of shell stability. Z. Flugwissenschaften Weltraum-Forschung5, 335–348 (1981).

    Google Scholar 

  21. Citerley, R. L.: Imperfection sensitivity and post-buckling behavior of shells, pressure vessels and piping: design technology — a decade of progress. (Zamrik, S. Y., Dietrich, D., eds.). New York: The American Soc. of Mech. Eng. 1982.

    Google Scholar 

  22. Simitses, G.: Buckling and postbuckling of imperfect cylindrical shells — a review. Appl. Mech. Rev.39, 1517–1524 (1986).

    Google Scholar 

  23. Bushnell, D.: Computerized buckling analysis of shells. The Netherlands: Martinus Nijhoff 1985.

    Google Scholar 

  24. Garber, A. M.: Pyrolitic materials for thermal protection systems. Aerospace Engineering 126–137 (1963).

  25. Terner, E.: On thermal stresses in certain transversely isotropic, pyrolitic materials. Proceedings of the Fourth U.S. National Congress of Applied Mechanics, pp. 1147–1152 (1962).

  26. Green, A. E., Zerna, W.: Theoretical elasticity. Oxford: At the Clarendon Press 1968.

    Google Scholar 

  27. Gol'denveizer, A. L.: Theory of thin shells (in Russian). Moscow: Nauka 1976.

    Google Scholar 

  28. Naghdi, P. M.: Foundations of elastic shell theory. In: Progress of solid mechanics (Sneddon, I. N., Hill, R., eds.)4, 1–101 (1962).

  29. Librescu, L.: Elasto-statics and kinetics of anisotropic and heterogeneous shell-type structures. Netherlands: Noordhoff 1975.

    Google Scholar 

  30. Reddy, J. N., Liu, C. T.: A higher-order theory for geometrically nonlinear analysis of composite laminates. NASA Cr. Rept. 4656 (1987).

  31. Simitses, G., Anastasiadis, J. S.: Shear deformable theories for cylindrical laminates — the equilibrium and buckling. AAIA J. (in press).

  32. Dennis, S. T., Palazotto, A. N.: Large displacement and rotational formulation for laminated shells including parabolic transverse shear. Int. J. Non-Linear Mech.25, 67–86 (1990).

    Google Scholar 

  33. Librescu, L.: Refined geometrically non-linear theories of anisotropic laminated shells. Quart. Appl. Mathematics45, 1–22 (1987).

    Google Scholar 

  34. Librescu, L., Reddy, J. N.: A few remarks concerning several refined theories of anisotropic laminated plates. Int. J. Eng. Sci.27, 515–527 (1989).

    Google Scholar 

  35. Reissner, E.: Reflections on the theory of elastic plates. Appl. Mech. Rev.28, 1453–1464 (1985).

    Google Scholar 

  36. Reissner, E.: On small finite deflections of shear deformable elastic plates. Comp. Meth. Appl. Mech. and Engng.59, 227–233 (1986).

    Google Scholar 

  37. Pelech, B. L.: Generalized theory of shells (in Russian). Lvov: High School 1978.

    Google Scholar 

  38. Seide, P.: A reexamination of Koiter's theory of initial postbuckling behavior and imperfection sensitivity of structures. In: Thin shell structures: theory, experiment, and design. (Fung, T. C., Sechler, E. E., eds.) pp. 59–80. New Jersey: Prentice-Hall 1974.

    Google Scholar 

  39. Nemeth, M. P.: Nondimensional parameters and equations for buckling of symmetrically laminated thin panels shallow shells. NASA TM 104060, March 1991.

  40. de Souza, M. A.: Post-buckling vibration characteristics of structural elements. Engng. Struct.9, 134–137 (1987).

    Google Scholar 

  41. de Souza, M. A.: The effects of initial imperfections and changing support conditions on the vibration of structutal elements liable to buckling. Thin-Walled Struct.5, 11–23 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Librescu, L., Chang, M.Y. Effects of geometric imperfections on vibration of compressed shear deformable laminated composite curved panels. Acta Mechanica 96, 203–224 (1993). https://doi.org/10.1007/BF01340710

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01340710

Keywords

Navigation