Skip to main content
Log in

Zooplankton abundance and grazing at Davies Reef, Great Barrier Reef, Australia

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Zooplankton abundance and grazing on autotrophic and heterotrophic particulate matter were measured along a transect across Davis Reef (18°5′S; 147°39′E) and in the back-reef lagoon over tidal and diel cycles during austral winter (August 1984). Zooplankton entering the reef from the surrounding shelf waters decreased in abundance over the reef flat, presumably because of predation. Within the reef lagoon, maximum daytime densities of pelagic copepods occurred during high water, suggesting an external input. At night, water-column zooplankton biomass increased by a factor of 2 to 3 due to the emergence of demersal reef zooplankton. Zooplankton grazing rates on heterotrophic particulate matter (bacteria + detritus and Protozoa) compared to phytoplankton were higher on the reef flat than on the fore-reef or lagoon. Within the lagoon, zooplankton grazing rates on heterotrophic material were maximum during high water, coincident with maximum tidal concentrations of particulate organic carbon. The combined demersal and pelagic zooplankton community were often able to crop 30% of the daily primary production by >2µm phytoplankton. However, >50% of phytoplankton biomass was in cells <2µm, presumably unavailable to these zooplankton. Our particulate production and ingestion measurements, together with zooplankton carbon demand extrapolated from respiration estimates, suggest that the zooplankton community of Davies Reef derives much of its nutrition from detritus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Allan, J. D., Richman, S., Heinle, D. R., Huff, R. (1977). Grazing in juvenile stages of some estuarine calanoid copepods. Mar. Biol. 43: 317–331

    Google Scholar 

  • Alldredge, A. L. (1981). The impact of appendicularian grazing on natural food concentrations in situ. Limnol. Oceanogr. 26: 247–257

    Google Scholar 

  • Alldredge, A. L., King, J. M. (1977). Distribution, abundance, and substrate preferences of demersal reef zooplankton at Lizard Island Lagoon, Great Barrier Reef. Mar. Biol. 41: 317–333

    Google Scholar 

  • Berk, S. G. Brownlee, D. C., Heinle, D. R., Kling, H. J., Colwell, R. R. (1977). Ciliates as a food source for marine planktonic copepods. Microb. Ecol. 4: 27–40

    Google Scholar 

  • Boak, A. C., Goulder, R. (1983). Bacterioplankton in the diet of the calanoid copepodEurythemora sp. in the Humber Esutary. Mar. Biol. 73: 139–149

    Google Scholar 

  • Conover, R. J. (1968). Zooplankton — life in a nutritionally dilute environment. Am. Zool. 8: 107–118

    Google Scholar 

  • Dagg, M. J. (1985). The effects of food limitation on diel migratory behavior in marine zooplankton. Arch. Hydrobiol. (Beih. Ergebn. Limnol.) 21: 247–255

    Google Scholar 

  • Daro, M. H. (1978). A simplified14C method for grazing measurements on natural planktonic populations. Helgoländer wiss. Meeresunters. 31: 241–248

    Google Scholar 

  • Ducklow, H. W. (1989). The biomass, production and fate of bacteria in coral reefs. In: Dubinsky, Z. (ed.) Coral reefs. Springer-Verlag, Heidelberg (in press)

    Google Scholar 

  • Ducklow, H. W., Mitchell, R. (1979). Composition of mucus released by reef coelenterates. Limnol. Oceanogr. 24: 706–714

    Google Scholar 

  • Emery, A. R. (1968). Preliminary observation on coral reef plankton. Limnol. Oceanogr. 13: 293–303

    Google Scholar 

  • Eppley, R. W. (1972). Temperature and phytoplankton growth in the sea. Fish. Bull. U.S. 70: 1063–1085

    Google Scholar 

  • Fitzwater, S. E., Knauer, G. A., Martin, J. H. (1982). Metal contamination and its effect on primary production measurements. Limnol. Oceanogr. 27: 544–551

    Google Scholar 

  • Flood, P. R. (1978). Filter characteristics of appendicularian food catching nets. Experientia 34: 173–175

    Google Scholar 

  • Frost, B. W. (1972). Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepodCalanus pacificus. Limnol. Oceanogr. 17: 805–815

    Google Scholar 

  • Fuhrman, J. A., Azam, F. (1982). Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120

    Google Scholar 

  • Furnas, M. J., Mitchell, A. W., Gilmartin, M., Revelante, N. (in preparation). Phytoplankton biomass and primary production in semi-enclosed reef lagoons of the central Great Barrier Reef, Australia.

  • Gerber, R. P., Gerber, M. B. (1979). Ingestion of natural particulate organic matter and subsequent assimilation, respiration and growth by tropical lagoon zooplankton. Mar. Biol. 52: 33–43

    Google Scholar 

  • Gerber, R. P., Marshall, N. (1974). Ingestion of detritus by the lagoon pelagic community at Enewetok Atoll. Limnol. Oceanogr. 19: 815–824

    Google Scholar 

  • Gerber, R. P., Marshall, N. (1982). Characterization of the suspended particulate organic matter and feeding by the lagoon zooplankton at Enewetok Atoll. Bull. mar. Sci. 32: 290–300

    Google Scholar 

  • Glynn, P. W. (1973). Ecology of a Caribbean coral reef. ThePorites reef-flat biotope: Part II. Plankton community with evidence for depletion. Mar. Biol. 22: 1–21

    Google Scholar 

  • Goldman, B., Talbot, L. H. (1976). Aspects of the ecology of coral reef fishes. In: Jones, O. A., Endean, R. (eds.) Biology and geology of coral reefs. Vol. 2. Academic Press, New York, p. 125–154

    Google Scholar 

  • Gottfried, M., Roman, M. R. (1983). Ingestion and incorporation of coral-mucus detritus by reef zooplankton. Mar. Biol. 72: 211–218

    Google Scholar 

  • Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R., Williams, D. McB. (1988). Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull. mar. Sci. 42: 459–479

    Google Scholar 

  • Hanson, R. B., Alvarez-Ossorio, M. T., Cal. R., Campos, M. J., Roman, M. R., Santiago, G., Varela, M., Yoder, J. A. (1986). Plankton response following a spring upwelling event in the Ría de Arosa, Spain. Mar. Ecol. Prog. Ser. 32: 101–113

    Google Scholar 

  • Hatcher, B. G. (1983). The role of detritus in the metabolism and secondary production of coral reef ecosystems. In: Baker, J. T., Carter, R. M., Sammarco, P. W., Stark, K. P. (eds.) Proceedings of the Inaugural Great Barrier Reef Conference. Townsville, James Cook University Press, p. 317–325

    Google Scholar 

  • Hitchcock, G. L. (1986). Methodological aspects of time-course measurements of14C fixation in marine phytoplankton. J. exp. mar. Biol. Ecol. 95: 233–243

    Google Scholar 

  • Hobson, E. S., Chess, J. R. (1979). Zooplankters that emerge from the lagoon floor at night at Kure and Midway Atolls, Hawaii. Fish. Bull. U.S. 77: 275–279

    Google Scholar 

  • Hollibaugh, J. T., Fuhrman, J. A., Azam, F. (1980). Radioactive labelling of natural assemblages of bacterioplankton for use in trophic studies. Limnol. Oceanogr. 25: 172–181

    Google Scholar 

  • Hopkinson, C. S., Sherr, B. F., Ducklow, H. W. (1987). Microbial regeneration of ammonium in the water column of Davies Reef, Australia. Mar. Ecol. Prog. Ser. 41: 147–153

    Google Scholar 

  • Houde, E. D., Lovdal, J. A. (1985). Patterns of variability of ichthyoplankton occurrence and abundance in Biscayne Bay, Florida. Estuar., cstl Shelf Sci. 20: 79–104

    Google Scholar 

  • Huntley, M., Brooks, E. R. (1982). Effects of age and food availability on diel vertical migration ofCalanus pacificus. Mar. Biol. 71: 23–31

    Google Scholar 

  • Ikeda, T. (1974). Nutritional ecology of marine zooplankton. Mem. Fac. Fish. Hokkaido Univ. 22: 1–97

    Google Scholar 

  • Ikeda, T. (1977). Feeding rates of planktonic copepods from a tropical sea. J. exp. mar. Biol. Ecol. 29: 263–277

    Google Scholar 

  • Johannes, R. E. (1967). Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr. 12: 189–195

    Google Scholar 

  • Kiørboe, T., Munk, P., Richardson, K., Christensen, V., Paulsen, H. (1988). Plankton dynamics and larval herring growth, drift and survival in a frontal area. Mar. Ecol. Prog. Ser. 44: 205–219

    Google Scholar 

  • Kinsey, D. W. (1972). Preliminary observations on community metabolism and primary productivity of the pseudo-atoll reef at One Tree Island. Proc. 1st int. Symp. coral Reefs 1: 13–32. [Mukudan, C., Pillai, C. S. (eds.) Marine Biological Association of India, Ernakulum, India]

    Google Scholar 

  • Lewis, J. B. (1976). Experimental tests of suspension feeding in Atlantic reef corals. Mar. Biol. 36: 147–150

    Google Scholar 

  • Lewis, J. B. (1981). Coral reef ecosystems. In: Longhurst, A. R. (ed.) Analysis of marine ecosystems, Academic Press, New York, p. 127–158

    Google Scholar 

  • Marshall, N. (1965). Detritus over the reef and its potential contribution to adjacent waters of Enewetok Atoll. Ecology 46: 343–344

    Google Scholar 

  • Marshall, N. (1968). Observations on organic aggregates in the vicinity of coral reefs. Mar. Biol. 2: 50–53

    Google Scholar 

  • Mullin, M. M., Roman, M. R. (1986). In situ feeding of a schooling mysid,Anisomysis sp., on Davies Reef. Bull. mar. Sci. 39: 623–629

    Google Scholar 

  • Muscatine, L., Porter, J. W. (1977). Reef corals: mutualistic symbiosis adapted to nutrient-poor environments. BioSci. 27: 454–460

    Google Scholar 

  • Nival, P., Nival, S. (1976). Particle retention efficiencies of a herbivorous copepod,Acartia clausi (adult and copepodite stages): effects on grazing. Limnol. Oceanogr. 21: 24–38

    Google Scholar 

  • Parsons, T. R., Takahashi, M., Hargrave, B. (1979). Biological oceanographic processes, Permagon Press, New York

    Google Scholar 

  • Petipa, T. S. (1958). The diurnal feeding rhythm of the copepod crustacean,Acartia clausi. Dokl. Akad. Nauk SSSR 120: 435–437

    Google Scholar 

  • Pickard, G. L. (1986). Effects of wind and tide on upper-layer currents at Davies Reef, Great Barrier Reef, during MECOR (July–August 1984). Aust. J. mar. Freshwat. Res. 37: 545–565

    Google Scholar 

  • Porter, J. W. (1974). Zooplankton feeding by the Caribbean reefbuilding coralMonastrea cavernosa. Proc. 2nd int. Symp. coral Reefs 2: 111–125 [Cameron, A. M., et al. (eds.) The Great Barrier Reef Committee, Brisbane]

    Google Scholar 

  • Randall, J. E. (1967). Food habits of the reef fishes of the West Indies. Stud. trop. Oceanogr., Miami 5: 665–847

    Google Scholar 

  • Richman, S., Heinle, D. R., Huff, R. (1977). Grazing by adult estuarine calanoid copepods of the Chesapeake Bay. Mar. Biol. 42: 69–84

    Google Scholar 

  • Richman, S., Loya, Y., Slobodkin, L. B. (1975). The rate of mucus production by corals and its assimilation by the coral reef copepod,Acartia negligens. Limnol. Oceanogr. 20: 918–923

    Google Scholar 

  • Roman, M. R. (1977). Feeding of the copepodAcartia tonsa on the diatomNitzschia closterium and brown algae (Fucus vesiculosus) detritus. Mar. Biol. 42: 149–155

    Google Scholar 

  • Roman, M. R. (1984a). Utilization of detritus by the copepod,Acartia tonsa. Limnol. Oceanogr. 29: 949–959

    Google Scholar 

  • Roman, M. R. (1984b). Ingestion of detritus and microheterotrophs by pelagic marine zooplankton. Bull. mar. Sci. 35: 477–494

    Google Scholar 

  • Roman, M. R., Ashton, K. A., Gauzens, A. L. (1988a). Day/night differences in the grazing impact of marine copepods. Hydrobiologia 167/168: 21–30

    Google Scholar 

  • Roman, M. R., Ducklow, H. W., Fuhrman, J. A., Garside, C., Glibert, P. M., Malone, T. C., McManus, G. B. (1988b). Production, consumption and nutrient cycling in a laboratory mesocosm. Mar. Ecol. Prog. Ser. 42: 39–52

    Google Scholar 

  • Roman, M. R., Gauzens, A. L., Cowles, T. J. (1985). Temporal and spatial changes in epipelagic microzooplankton and mesozooplankton biomass in warm-core Gulf Stream ring 82-B. Deep-Sea Res. 32: 1007–1022

    Google Scholar 

  • Roman, M. R., Rublee, P. A. (1981). A method to determinein situ zooplankton grazing rates on natural particle assemblages. Mar. Biol. 65: 303–309

    Google Scholar 

  • Roman, M. R., Yentsch, C. S., Gauzens, A. L., Phinney, D. A. (1986). Grazer control of the fine-scale distribution of phytoplankton in warm-core Gulf Stream rings. J. mar. Res. 44: 795–813

    Google Scholar 

  • Sale, P. F., McWilliam, P. S., Anderson, D. T. (1976). Composition of the near-reef zooplankton at Heron Reef, Great Barrier Reef. Mar. Biol. 34: 59–66

    Google Scholar 

  • Sammarco, P. W., Crenshaw, H. (1984). Plankton community dynamics of the central Great Barrier Reef Lagoon: analysis of data of Ikedaet al. Mar. Biol. 82: 167–180

    Google Scholar 

  • Sorokin, Y. I. (1973). Microbiological aspects of the productivity of coral reefs. In: Jones, O. A., Endean, R. (eds.) Biology and geology of coral reefs. Vol. 1. Academic Press, New York, p. 17–45

    Google Scholar 

  • Steeman Nielsen, E. (1952). The use of radioactive carbon (14C) for measuring production in the sea. J. Cons. perm. int. Explor. Mer. 18: 117–140

    Google Scholar 

  • Stoecker, D. K., Egloff, D. A. (1987). Predation byAcartia tonsa Dana on planktonic ciliates and rotifers. J. exp. mar. Biol. Ecol. 110: 53–68

    Google Scholar 

  • Strickland, J. D. H., Parsons, T. R. (1972). A practical handbook of seawater analysis. 2nd ed. Bull. Fish. Res. Bd Can. 167: 1–310

    Google Scholar 

  • Williams, R., Robins, D. B. (1982). Effects of preservation on wet weight, dry weight, nitrogen and carbon contents ofCalanus helgolandicus (Crustacea: Copepoda). Mar. Biol. 71: 271–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Joint contribution from the University of Maryland, Center for Environmental and Estuarine Studies (No. 2015), and the Microbial Ecology on a Coral Reef Workshop (MECOR No. 19)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roman, M.R., Furnas, M.J. & Mullin, M.M. Zooplankton abundance and grazing at Davies Reef, Great Barrier Reef, Australia. Mar. Biol. 105, 73–82 (1990). https://doi.org/10.1007/BF01344272

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344272

Keywords

Navigation