Skip to main content
Log in

Fracture behaviour of model toughened composites under Mode I and Mode II delaminations

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fracture behaviour of two toughened epoxy composite systems was investigated using various microscopy techniques. The Mode I delamination fracture toughness,G IC, Mode II delamination fracture toughness;G IIC, and compression after impact (CAI) strength of these model composite systems were also measured. Under Mode I fracture, it was found that these composites exhibit nearly identical toughening mechanisms to those of the rubber-modified neat resins. The composites differ primarily in having smaller damage zones than the neat resin equivalents. Under Mode II fracture, the typical hackles were found to initiate from inside the resin-rich interlaminar region due to the presence of the toughener particles. The CAI strength, based on the present study as well as the work conducted by others, appeared to be related to, but not necessarily strongly dependent on, the interlaminarG IC andG IIC, the thickness of the interlaminar resin-rich region, and the type of the interlaminar toughener particles. Approaches for improving theG IC,G IIC, and CAI strength of high-performance toughened composites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. ODAGIRI and H. KISHI,Polym. Preprint 33 (1992) 384.

    Google Scholar 

  2. D. S. PARKER and A. F. YEE,J. Therm. Compos. Mater. 2 (January) (1989) 2.

    Google Scholar 

  3. W. L. BRADLEY, in “Application of Fracture Mechanics to Composite Materials”, edited by K. Friedrich (Elsevier Applied Science, New York, 1989) p. 159.

    Google Scholar 

  4. C. R. CORLETO and W. L. BRADLEY, in “Composite Materials: Fracture and Fatigue”, Vol. 2, ASTM STP 1012, edited by P. A. Lagace (American Society for Testing and Materials, Philadelphia, PA, 1989) p. 201.

    Google Scholar 

  5. C. B. BUCKNALL, in “Advanced Composites”, edited by I. K. Partridge, (Elsevier Applied Science, New York, 1989) p. 145.

    Google Scholar 

  6. D. L. CRANE, MS thesis, Texas A and M University (1990).

  7. W. L. BRADLEY, in “Proceedings of the Benibana International Symposium”, October 1990.

  8. D. HUNSTON and R. DEHL, “The Role of Matrix Toughness in Matrix Dominated Composite Fracture” (Society of Manufacturing Engineers, 1987) p. 355.

  9. W. L. BRADLEY, in “The Role of Matrix Properties on the Toughness of Thermoplastic Composite”, edited by R. B. Pipe (Elsevier Applied Science, New York, 1991) p. 295.

    Google Scholar 

  10. J. E. MASTERS, in “Proceedings of 6th International Conference on Composite Materials”, Vol. 3 (Elsevier Applied Science, New York, 1987) p. 396.

    Google Scholar 

  11. I. GAWIN, US Pat. 4 783 506 (1988).

  12. R. E. EVANS, and K. R. HIRSCHBUEHLER, US Pat. 4 604 319(1986).

  13. N. ODAGIRI, H. KISHI and T. NAKAE, “T800H/3900-2 Toughened Epoxy Prepreg System: Toughening Concept and Mechanism” (6th American Society for Composites, New York, 1991) p. 43.

    Google Scholar 

  14. M. A. HOISINGTON and J. C. SEFERIS, “Process-Structure-Property Relationship for Layered Structured Composites” (6th American Society for Composites, New York, 1991) p. 53.

    Google Scholar 

  15. H.-J. SUE, R. A. PEARSON and A. F. YEE,Polym. Eng. Sci. 24 (1989) 1447.

    Google Scholar 

  16. H.-J. SUE, PhD thesis, The University of Michigan, Ann Arbor, MI (1988).

    Google Scholar 

  17. H.-J. SUE and A. F. YEE,J. Mater. Sci. 26 (1991) 3449.

    Google Scholar 

  18. K.-K. KOO, T. INOUE and K. MIYASAKA,Polym. Eng. Sci. 25 (1985) 741.

    Google Scholar 

  19. H.-J. SUE, E. I. GARCIA-MEITIN and P. C. YANG,Composites (1992) submitted.

  20. A. F. YEE. in “Toughened Composites”, STP 937, edited by N. J. Johnston (American Society for Testing and Materials, Philadelphia, PA, 1986) p. 383.

    Google Scholar 

  21. R. E. JONES and D. L. CALDWELL, “The Correlation of Resin Toughness and the Fiber-Resin Interfacial Shear Strength with Damage Tolerance” (5th American Society for Composites, New York, 1990) p. 154.

    Google Scholar 

  22. D. E. HENTON, D. M. PICKELMAN, C. B. ARENDS and V. E. MEYER, US Pat. 4 778 851 (1988).

  23. H.-J. SUE, E. I. GARCIA-MEITIN, D. M. PICKELMAN and P. C. YANG, in “Toughened Plastics: Science and Engineering”, ACS Vol. 233, edited by C. K. Riew, in press.

  24. E. I. GRACIA-MEITIN and H.-J. SUE, in preparation.

  25. K. FRIEDRICH (Ed.), “Application of Fracture Mechancis to Composite Materials” (Elsevier Science, New York, 1989).

    Google Scholar 

  26. S. HASHEMI, A. J. KINLOCH and J. G. WILLIAMS,Proc. R. Soc. A 427 (1990) 173.

    Google Scholar 

  27. J. G. WILLIAMS,J. Strain Anal. 24 (1989) 207.

    Google Scholar 

  28. S. HASHEMI, A. J. KINLOCH and J. G. WILLIAMS, in “Composite Materials: Fatigue and Fracture”, Vol. 2, ASTM STP 1110, edited by T. K. O'Brien (American Society for Testing and Materials, Philadelphia, PA, 1991) p. 143.

    Google Scholar 

  29. SACMA Standard SRM 2-88.

  30. P. C. YANG, E. P. WOO, S. A. LAMAN, J. J. JAKUBOWSKI, D. M. PICKELMAN and H.-J. SUE, in “36th International SAMPE Conference”, Vol. 36 (1991) p. 437.

  31. A. J. LESSER and A. G. FILIPPOV,ibid.in “ (1991) p. 886.

    Google Scholar 

  32. H.-J. SUE,Polym. Eng. Sci. 31 (1991) 275.

    Google Scholar 

  33. A. J. KINLOCH, “Adhesion and Adhesives” (Chapman and Hall, New York, 1987).

    Google Scholar 

  34. W. D. BASCOM and S. Y. GWEON, in “Fractography and Failure Mechanisms in Polymers and composite”, edited by A. C. Roulin-Moloney (Elsevier Applied Science, New York. 1989).

    Google Scholar 

  35. T. JOHANNESSON, P. SJOBLOM and R. SELDEN,J. Mater. Sci. 19 (1984) 1171.

    Google Scholar 

  36. G. E. MORRIS, in “Nondestructive Evaluation and Flaw Critically for Composite Materials”, edited by R. B. Pipe, ASTM STP 696 (American Society for Testing and Materials, Philadelphia, PA, 1979) p. 274.

    Google Scholar 

  37. B. W. SMITH and R. A. GROVE, in “Fractography of Modern Engineering Materials”, edited by J. E. Masters and J. J. Au, ASTM STP 948 (American Society for Testing and Materials, Philadelphia, PA, 1987) p. 154.

    Google Scholar 

  38. M. CHARALAMBIDES, A. J. KINLOCH, Y. WANG and J. G. WILLIAMS,Int. J. Fract. (1992) in press.

  39. P. B. BOWDEN, in “The Physics of Glassy Polymers” edited by R. Haward (Applied Science, London, 1973).

    Google Scholar 

  40. M. F. HIBBS and W. L. BRADLEY, in “Fractography of Modern Engineering Materials”, edited by J. E. Masters and J. J. Au, ASTM STP 948 (American Society for Testing and Materials, Philadelphia, PA, 1987) p. 68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sue, H.J., Jones, R.E. & Garcia-Meitin, E.I. Fracture behaviour of model toughened composites under Mode I and Mode II delaminations. J Mater Sci 28, 6381–6391 (1993). https://doi.org/10.1007/BF01352201

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01352201

Keywords

Navigation