Skip to main content
Log in

Kinematic and aerodynamic parameters in tethered flying siskins (Carduelis spinus, Passeres, Aves)

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Stationary flight of siskins (Carduelis spinus) was achieved by tethering them in a harness of yarn strands fastened to a metal rod (Fig. 1). The wing-beat frequency and the wing-stroke angles were recorded by miniature movement detectors, i.e. small sensing coils glued on the armwings. Kinematic parameters were also recorded cinematographically. The aerodynamic parameters, lift and thrust, of the tethered flying birds could be measured by mechanoelectric transducers in a flight balance (Fig. 2). The frontal air current of a wind tunnel (Fig. 3) stimulated the flight movements, and generated a drag which opposed the thrust. When these two forces were brought into equilibrium, the wind speed equaled the flight speed of the bird in relation to the air.

Tethered flight begins with a continuous flight which changes to the leaping flight in which flapping intervals alternate with pauses (Fig. 4). The leaping flight lasts up to two hours. The wing-beat frequency is about 19 Hz both, during the continuous flight and the flapping intervals of the leaping flight. However, it is only about 9 Hz during the leaping flight if the pauses are averaged in, too. The flight pattern as well as the kinematic of the wing movements (Fig. 5) of tethered flying siskins resembles those of free flying small birds. Whereas just after the start the generated lift is greater than the body weight of the siskin, these two forces are approximately in equilibrium during the following flight periods (Fig. 6). If, in addition, the thrust of the flying siskin compensates its drag, the aerodynamic situation of this tethered flight equals that of horizontal, nonaccelerated free flapping flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biederman-Thorson, M., Thorson, J.: Rotation-compensating reflexes independent of the labyrinth and the eye. J. comp. Physiol.83, 103–122 (1973)

    Google Scholar 

  • Bilo, D.: Untersuchungen über die Flugbiophysik von Kleinvögeln (unter Anwendung der Hochfrequenz-Stereokinematographie und der Windkanaltechnik). Inaug.-Diss., München 1969

  • Bilo, D.: Flugbiophysik von Kleinvögeln. I. Kinematik und Aerodynamik des Flügelabschlages beim Haussperling (Passer domesticus L.). Z. vergl. Physiol.71, 382–454 (1971)

    Google Scholar 

  • Bilo, D.: Flugbiophysik von Kleinvögeln. II. Kinematik und Aerodynamik des Flügelaufschlages beim Haussperling (Passer domesticus L.). Z. vergl. Physiol.76, 426–437 (1972)

    Google Scholar 

  • Csicsáky, M.J.: Body-gliding in the zebra finch. Fortschr. Zool.24, 275–286 (1977)

    Google Scholar 

  • Gewecke, M.: The influence of the air-current sense organs on the flight behaviour ofLocusta migratoria. J. comp. Physiol.103, 79–95 (1975)

    Google Scholar 

  • Gewecke, M., Woike, M.: Breast feathers as an air-current sense organ for the control of flight behaviour in a songbird (Carduelis spinus). Z. Tierpsychol.47, 293–298 (1978)

    Google Scholar 

  • Hagiwara, S., Chichibu, S., Simpson, N.: Neuromuscular mechanisms of wing beat in hummingbirds. Z. vergl. Physiol.60, 209–218 (1968)

    Google Scholar 

  • Koch, U.T.: A miniature movement detector applied to recording of wingbeat inLocusta. Fortschr. Zool.24, 327–332 (1977)

    Google Scholar 

  • Marey, E.-J.: Le vol des oiseaux. Paris: Massen 1890

    Google Scholar 

  • Nachtigall, W.: Die Kinematik der Schlagflügelbewegungen von Dipteren. Methodische und analytische Grundlagen zur Biophysik des Insektenflugs. Z. vergl. Physiol.52, 155–211 (1966)

    Google Scholar 

  • Nachtigall, W.: Biophysik des Tierflugs. Rhein.-Westf. Akad. Wiss. N236, 73–152 (1974)

    Google Scholar 

  • Norberg, U.M.: Hovering flight in the pied flycatcher (Ficedula hypoleuca). In: Swimming and flying in nature, Vol. II (ed. T.Y.-T. Wu, C.J. Brokaw, C. Brennen), pp. 869–881. New York: Plenum Publishing Corporation 1975

    Google Scholar 

  • Oehme, H.: Der Rüttelflug des Gartenrotschwanzes (Phoenicurus phoenicurus). Beitr. Vogelkd.15, 417–433 (1970)

    Google Scholar 

  • Pennycuick, C.J.: Power requirements for horizontal flight in the pigeonColumba livia. J. exp. Biol.49, 527–555 (1968)

    Google Scholar 

  • Rüppell, G.: Flugmanöver des Gartenrotschwanzes (Phoenicurus phoenicurus L.). Z. vergl. Physiol.71, 190–200 (1971)

    Google Scholar 

  • Stolpe, M., Zimmer, K.: Der Schwirrflug des Kolibri im Zeitlupenfilm. J. Orn.87, 136–155 (1939)

    Google Scholar 

  • Tucker, V.A.: Respiratory exchange and evaporative water loss in the flying budgerigar. J. exp. Biol.48, 67–87 (1968)

    Google Scholar 

  • Woike, M.: Verhaltensphysiologische Untersuchungen an fixiert fliegenden Zeisigen (Carduelis spinus L., Aves, Passeres). Diplomarbeit, Düsseldorf 1976

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank Prof. Dr. D. Bilo for helpful discussions concerning the construction of the wind tunnel, and Drs. U. Koch and W. Zarnack for kindly showing us how to work with the miniature movement detectors. Thanks are also due to the Beringungsgemeinschaft Schönholz for catching the siskins. We are grateful to Dr. J. Dean for reading the manuscript, and Mr. E. Friedrich for preparing the figures. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Ge 249/2, 4 and 5).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woike, M., Gewecke, M. Kinematic and aerodynamic parameters in tethered flying siskins (Carduelis spinus, Passeres, Aves). J. Comp. Physiol. 127, 123–129 (1978). https://doi.org/10.1007/BF01352296

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01352296

Keywords

Navigation