Skip to main content
Log in

An analysis of apparent slip flow of polymer solutions

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Theapparent slip flow phenomenon of polymer solutions in capillary tubes is analyzed by a thermodynamic diffusion model. An approximate solution of the developing concentration profiles shows a significant decrease in the polymer wall concentration. The approximate concentration profiles are coupled with the concentration-dependent viscosity for aqueous polyacrylamide solutions to provide a priori predictions of the magnitude of the effective slip velocity at the wall. The results are in a reasonable agreement with the available apparent slip data for 1% and 0.5% solutions of partially hydrolyzed polyacrylamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

parameter defined in eq. (12)

C :

polymer mass concentration

C p :

polymer concentration in weight percent

d :

parameter defined in eq. (13)

D :

tube diameter

D 12 :

phenomenological diffusion coefficient for a polymer in a solvent

D :

polymer mass diffusivity in polymer solution; eq. (9)

f :

entropic potential; eqs. (5) and (17)

J (2) :

diffusion flux of polymer

k, k 0 :

power law parameter (consistency index) at the local and initial concentrations, respectively

k m :

empirical relaxation time parameter: eq. (35)

L :

tube length

m :

empirical parameter; eq. (35)

n, n 0 :

power-law parameter (flow-behavior index) at the local and initial concentrations

N WS :

Weissenberg number; eq. (21)

N pec :

Peclet number; eq. (15)

p :

pressure

Q :

total flow rate

Q s :

flow rate increase due toapparent slip

r :

radial position

\(\bar r\) :

dimensionless radial position

R :

tube radius

R c :

universal gas constant

T :

temperature

v :

velocity

V s :

effective slip velocity

V z 〉:

average axial velocity

\(\bar V_z \) :

dimensionless axial velocity

〈V z NS :

average axial velocity in the absence of apparent slip effects

V r :

radial velocity

z :

axial position

z * :

dimensionless axial position

\(\dot \gamma \) :

shear rate

\(\dot \gamma \) :

wall shear rate corrected for apparent slip effects

θ :

fluid relaxation time

θ NS :

relaxation time in the absence of apparent slip at\(\dot \gamma = \dot \gamma _{NS} \)

τ :

shear stress

τ w :

wall shear stress

η :

local viscosity

References

  1. Reiner M (1931) J Rheol 2:337

    Google Scholar 

  2. Toms BA (1949) J Colloid Sci 4:511

    Google Scholar 

  3. Kozicki WC, Pasari SM, Rao ARK, Tiu C (1970) Chem Eng Sci 25:41

    Google Scholar 

  4. Vlasov SA, Kalashnikov VN (1973) Fluid Mech Soviet Res 12:104

    Google Scholar 

  5. Kalashnikov VN, Vlasov SA (1978) Rheol Acta 17:296

    Google Scholar 

  6. Metzner AB, Cohen Y, Rangel-Nafaile C (1979) J Non-Newtonian Fluid Mech 5:449

    Google Scholar 

  7. Cohen Y, Metzner AB (1982) AIChE Symp Series, No 212, 78:77

    Google Scholar 

  8. Cohen Y, Metzner AB (1985) J Rheology 2:67

    Google Scholar 

  9. Astarita G, Marrucci G, Palumbo G (1964) Ind Eng Chem Fundamentals 3, 3:33

    Google Scholar 

  10. Therien N, Coupal B, Corneille JL (1970) Can J Chem Eng 48:17

    Google Scholar 

  11. Carreau PJ, Bui QH, Leroux P (1979) Rheol Acta 18:606

    Google Scholar 

  12. Kozicki WC, Hsu CJ, Tiu C (1967) Chem Eng Sci 22:487

    Google Scholar 

  13. Savins JG (1969) Ind Eng Chem 61:18

    Google Scholar 

  14. Chauveteau G (1982) J Rheol 26:111

    Google Scholar 

  15. Cohen Y (1981) PhD Thesis, University of Delaware, Newark

  16. Mooney M (1931) J Rheol 2:210

    Google Scholar 

  17. Brunn P (1976) Rheol Acta 15:23

    Google Scholar 

  18. Aubert JH, Tirrell M (1982) J Chem Phys 77:553

    Google Scholar 

  19. Dutta A, Mashelkar RA (1982) Rheol Acta 21:52

    Google Scholar 

  20. Dutta A, Mashelkar RA (1983) Rheol Acta 22:455

    Google Scholar 

  21. Tirrell M, Malone MF (1977) J Polym Sci, Polym Phys Ed 15:1569

    Google Scholar 

  22. Metzner AB (1977) in: Shah DO, Schechter RS (eds) Improved Oil Recovery by Surfactant and Polymer Flooding. Academic Press, New York

    Google Scholar 

  23. Garner FH, Nissan AH (1946) Nature 158:634

    Google Scholar 

  24. Schreiber HP, Storey SH, Bagley EB (1966) Trans Soc Rheol 10:275

    Google Scholar 

  25. Busse WF (1967) J Polym Sci A-2, 5:1261

    Google Scholar 

  26. Aubert HJ, Tirrell M (1980) J Chem Phys 72:1694

    Google Scholar 

  27. Aubert JH, Prager S, Tirrell M (1980) J Chem Phys 73:4103

    Google Scholar 

  28. Sekhon G, Armstrong RC, Jhon MS (1982) J Polym Sci, Polym Phys Ed 20:947

    Google Scholar 

  29. Brunn PO (1983) J Multiphase Flow 9:187

    Google Scholar 

  30. Brunn PO, Chi S (1984) Rheol Acta 23:163

    Google Scholar 

  31. Cohen Y, Metzner AB (1984) submitted, Chem Eng Sci

  32. Drouot R, Maugin GA (1983) Rheol Acta 22:336

    Google Scholar 

  33. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca

    Google Scholar 

  34. Bird RB, Stewart WE, Lightfoot EN (1960) Transport Phenomena. John Wiley and Sons, Inc, New York

    Google Scholar 

  35. Peterlin A (1966) Pure Appl Chem 12:563

    Google Scholar 

  36. Shertzer CR (1965) PhD Thesis, University of Delaware, Newark

  37. Choplin L, Carreau PJ (1981) J Non-Newtonian Fluid Mech 9:119

    Google Scholar 

  38. Weissenberg K (1929) as cited by B. Rabinowitsch. Z Physik Chemie, A145:1

    Google Scholar 

  39. Akay G (1980) in: Astarita G, Marrucci G, Nicolai L (eds) Rheology, vol 1, p 351

  40. Scholtan W (1954) Makromol Chem 14:169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, Y., Metzner, A.B. An analysis of apparent slip flow of polymer solutions. Rheol Acta 25, 28–35 (1986). https://doi.org/10.1007/BF01369977

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01369977

Key words

Navigation