Skip to main content
Log in

Theoretical derivation of Darcy's law

Eine theoretische Ableitung des Darcyschen Gesetzes

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Darcy's law for anisotropic porous media is derived from the Navier-Stokes equation by using a formal averaging procedure. Particular emphasis is placed upon the proof that the permeability tensor is symmetric. In addition, it is shown that there is a one-to-one relationship between the local and macroscopic velocity fields. This leads to the interesting phenomenological observation that the local velocity vector at any given point must always lie either on a fixed line or in a fixed plane. All of this holds true for an incompressible homogeneous Newtonian fluid moving slowly through a rigid porous medium with uniform porosity under isothermal and steady state conditions. The question whether Darcy's law is applicable under nonsteady or compressible flow conditions, or when the medium has nonuniform porosity, is also discussed. Finally, it is shown that the Hagen-Poiseuille equation, as well as the expression describing Couette flow between parallel plates, can be derived from the equations presented in this work and may thus be viewed as special cases of Darcy's law.

Zusammenfassung

Das Darcysche Gesetz für anisotrope poröse Werkstoffe wird von den Navier-Stokes-Gleichungen durch formale Mittelwertbildung abgeleitet. Insbesondere betont wird der Beweis der Symmetrie des Permeabilitätstensors. Weiter wird gezeigt, daß eine eineindeutige Beziehung zwischen lokalen und makroskopischen Geschwindigkeitsfeldern existiert. Dies führt zur interessanten phänomenologischen Beobachtung, daß in jedem Punkt der lokale Geschwindigkeitsvektor entweder auf einer festen Geraden oder in einer festen Ebene liegt. All dies gilt für inkompressible homogene Newtonsche Flüssigkeiten, die sich langsam, stationär unter isothermen Bedingungen durch einen starren porösen Körper gleichförmiger Porösität bewegen. Die Frage, ob das Darcysche Gesetz für instationäre Strömungen oder kompressible Fälle oder für ungleichförmige Porösität gilt, wird ebenfalls diskutiert. Abschließend wird gezeigt, daß die Hagen-Poiseuille-Gleichung und der Ausdruck für die Couette-Strömung zwischen parallelen Platten von der in dieser Arbeit angegebenen Gleichung abgeleitet und daher als Spezialfälle des Darcyschen Gesetzes betrachtet werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

scalar ratio betweenv i and projection of <v i >* at centroid ofR in the direction ofv i

b :

half distance between parallel plates,L

d :

diameter of straight tube,L

f :

any local property of the fluid defined in the pores and vanishing in the solids

<f>:

bulk-volume average off

<f>* :

pore-volume average off

g :

acceleration due to gravity,LT −2

g i :

(0,0,−g),LT −2

G :

Green's function of porous space

h(f) :

probability density off onГ sf

k ij :

permeability tensor,L 2

l i :

unit vector lying in the plane ofv i (orm i ) and <v i >* and perpendicular tom i

m i :

unit vector parallel tov i

n i :

unit vector normal toГ sf and pointing into the solids

p :

local fluid pressure,ML −1 T −2

<p>* :

macroscopic (pore-volume average) pressure,ML −1 T −2

r :

radius of straight tube,L

R :

representative elementary volume of porous medium,L 3

t :

time,T

v i :

local fluid velocity vector,LT −1

<v i >:

bulk-volume average ofv i (darcy velocity or specific flux vector),LT −1

x i :

vector of Cartesian coordinates,x 3 being the vertical,L

α ij :

am i m j or −(δ ij l i l j )

Г m :

Dirichlet boundary segment of Ω,L 2

Г sf :

solid-fluid interfaces inR, L 2

δ; ij :

Kronecker delta

μ:

dynamic fluid viscosity,ML −1 T −1

ϱ:

fluid density,ML −3

ϕ:

porosity ofR

Ф:

local force potential, defined as\(---x_i g_i + \frac{p}{\varrho }\),L 2 T −2

Φ* :

macroscopic (pore-volume average) force potential, defined as\(---x_i g_i + \frac{{\left\langle p \right\rangle *}}{\varrho }\),L 2 T −2

Φ m :

prescribed values of Ф at external boundaries of porous medium, L2T−2

Δ 2 :

Laplacian operator,L −2

References

  1. Ahmed, N., andD. K. Sunada: Nonlinear flow in porous media. Jour. Hydr. Div., ASCE95 (1969).

  2. Bachmat, Y.: Basic transport coefficients as aquifer characteristics. International Association of Scientific Hydrology Symposium on Fractured Rocks, Dubrovnik,1, 63, (1965).

    Google Scholar 

  3. Bhattacharaya, R. N., V. I. Gupta andG. Sposito: On the stochastic foundations of the theory of unsaturated flow. Water Resources Research (1976), in press.

  4. Bear, J.: Dynamics of Fluids in Porous Media. New York: Elsevier. 1972.

    Google Scholar 

  5. Carman, P. C.: Flow of Gases through Porous Media. London: Butterworths. 1956.

    Google Scholar 

  6. Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Paris: Victor Dalmont. 1856.

    Google Scholar 

  7. Ferrandon, J.: Les lois de l'écoulement de filtration. Le Génie Civil125, 24 (1948).

    Google Scholar 

  8. Garabedian, P. R.: Partial Differential Equations. New York: J. Wiley. 1964.

    Google Scholar 

  9. Hall, W. A.: An analytical derivation of the Darcy equation. EOS Trans., AGU,37, 185 (1956).

    Google Scholar 

  10. Hubbert, M. K.: The theory of ground water motion. Journal Geology48, 785 (1940).

    Google Scholar 

  11. Hubbert, M. K.: Darcy's law and the field equations of the flow of underground fluids. Amer. Inst. Mining Engin., Petrol. Trans.207, 222 (1956).

    Google Scholar 

  12. Irmay, S.: On the theoretical derivation of Darcy and Forchheimer formulas. EOS Trans., AGU,39, 702 (1958).

    Google Scholar 

  13. Lapwood, E. R.: Convection of a fluid in a porous medium. Proc. Cambr. Philos. Soc.44, 508 (1948).

    Google Scholar 

  14. Mokadam, R. G.: Thermodynamic analysis of the Darcy law. Trans. Amer. Soc. Mech. Engrs.83, 208 (1961).

    Google Scholar 

  15. Orovyan, T., andE. Sil'vyan: O povyshenii davleniya v skvazhine posle ee zakrytiya. Rev. Mécan. Appl.5, 215 (1960).

    Google Scholar 

  16. Paria, G.: Flow of fluids through porous deformable solids. Appl. Mech. Rev.16, 421 (1963).

    Google Scholar 

  17. Philip, J. R.: Transient fluid motions in saturated porous media. Australian Jour. Phys.10, 43 (1957).

    Google Scholar 

  18. Poreh, M., andC. Elata: An analytical derivation of Darcy's law. Israel Jour. Technology4, 214 (1966).

    Google Scholar 

  19. Prager, S.: Viscous flow through porous media. Phys. of Fluids4, 1477 (1961).

    Google Scholar 

  20. Raats, P. A. C., andA. Klute: Transport in soils: The balance of momentum. Soils Sci. Soc. Am. Proc.32, 452 (1968).

    Google Scholar 

  21. Scheidegger, A. E.: The Physics of Flow through Porous Media, 2nd ed. Toronto: University of Toronto Press. 1960.

    Google Scholar 

  22. Scheidegger, A. E.: Statistical hydrodynamics in porous media, in: Advances in Hydroscience, Vol. 1. New York: Academic Press. 1964.

    Google Scholar 

  23. Scheidegger, A. E.: Statistical theory of flow through porous media. Trans. Soc. Rheol.9, 313 (1965).

    Google Scholar 

  24. Schweitzer, S.: On a possible extension of Darcy's law. Jour. Hydrology22, 29 (1974).

    Google Scholar 

  25. Slattery, J. C.: Flow of viscoelastic fluids through porous media. Amer. Inst. Chem. Engin. Jour.13, 1066 (1967).

    Google Scholar 

  26. Slattery, J. C.: Single-phase flow through porous media. Amer. Inst. Chem. Engin. Jour.15, 866 (1969).

    Google Scholar 

  27. Slattery, J. C.: Momentum, Energy, and Mass Transfer in Continua. New York: McGraw-Hill. 1972.

    Google Scholar 

  28. Truesdell, C., andW. Noll: The non-linear field theories of mechanics, in: Handbuch der Physik, Vol. 3, pt. 3. Berlin-Heidelberg-New York: Springer. 1965.

    Google Scholar 

  29. Whitaker, S.: The equations of motion in porous media. Chem. Engin. Sci.21, 291 (1966).

    Google Scholar 

  30. Whitaker, S.: Diffusion and dispersion in porous media. Amer. Inst. Chem. Engin. Jour.13, 420 (1967).

    Google Scholar 

  31. Whitaker, S.: Advances in theory of fluid motion in porous media. Industr. Engin. Chem.61, 14 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Fugures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuman, S.P. Theoretical derivation of Darcy's law. Acta Mechanica 25, 153–170 (1977). https://doi.org/10.1007/BF01376989

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01376989

Keywords

Navigation