Skip to main content
Log in

The effect of morphology on thermal stability of isotactic polypropylene in air

  • Original Contributions
  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

The studies on thermooxidative degradation of isotactic polypropylene films with different morphological structure were carried out in the air in temperature range 85–145 °C. The various crystallinity degrees and morphologies of PP films were obtained by cooling the melt and crystallization at different temperatures. The studies on structural changes going together with degradation and on the kinetics of chain scission have shown that this reaction occurs in two stages. The first is connected with consumption of oxygen dissolved in the initial films and the second is controlled by its diffusion into the films. The rates of degradation and structural changes occurring simultaneously depend not only on the initial crystallinity but also on morphology of the systems under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geil;P. H. Polymer Single Crystals, Interscience Publ. J. Wiley and Sons (New York 1963).

    Google Scholar 

  2. Keith, H. D., F. J. Padden, R. G. Vadimsky, 7. Polymer Sci. A-2,4, 267 (1966).

    Google Scholar 

  3. MacAllister, P. B., T. J. Carter, R. M. Hinde, J. Polymer Sci. A-2,16, 49 (1978).

    Google Scholar 

  4. Wyckoff, H. W., J. Polymer Sci.62, 83 (1962).

    Google Scholar 

  5. Zannetti, R., P. Manaresi, G. C. Buzzoni, Chim. Ind.43, 735 (1961).

    Google Scholar 

  6. Mandelkern, L., Crystallization of Polymers, McGraw Hill Book Comp. (New York 1964),

    Google Scholar 

  7. Michaels, A. S., H. J. Bixler, H. L. Fein, J. Appl. Phys.35, 3165 (1964).

    Google Scholar 

  8. Vieth, W., W. F. Wuerth, J. Appl. Polymer Sci.13, 685 (1969).

    Google Scholar 

  9. Thermal Stability of Polymers, Ed.R. T. Conley, Marcel Dekker Inc. vol. 1 (New York 1970).

  10. Billingham, N. C., T J. Walker, J. Polymer Sci. A-1,13, 1209 (1975).

    Google Scholar 

  11. Ono, K., A. Kaeriyama, K. Murakami, Rubber Chem. Techn.50, 43 (1977).

    Google Scholar 

  12. Sickle, D. E. V., Macromolecules10, 474 (1977).

    Google Scholar 

  13. Luongo, J. P., J. Polymer Sci.B1, 141 (1963).

    Google Scholar 

  14. Dulog, L., E. Radlmann, W. Kern, Makromolekulare Chemie60, 1 (1963).

    Google Scholar 

  15. Kato, Y., D. J. Carlsson, D. W. Wiles, J. Appl. Polymer Sci.13, 1447 (1969).

    Google Scholar 

  16. Iring.M., Zs. Hedwig-László, T. Kelen, F. Tüdos, Thermal Analysis, 4th ICTA vol 2, 127, Akadémiai Kiado, (Budapest 1975).

    Google Scholar 

  17. Decker, C., F. R. Mayo, J. Polymer Sci. Polymer Chem. Ed.11, 2847 (1973).

    Google Scholar 

  18. Hawkins, L., J. Polymer Sci.41, 1 (1959).

    Google Scholar 

  19. Winslow, F. H., C. J. Aloisio, W. L. Hawkins, W. Matereyek, S. Matsuoka, Chem. Ind. (London)533, 1465 (1963).

    Google Scholar 

  20. Reich, L., S. S. Stivala, P. G. Kelleher, Makromolekulare Chemie59, 28 (1963).

    Google Scholar 

  21. Seeger, M., H. J. Cantow, Makromolekulare Chemie176, 2059 (1975).

    Google Scholar 

  22. Davis, T. E., R. L. Tobias, E. B. Peterli, J. Polymer Sci.56, 485 (1962).

    Google Scholar 

  23. Pratt, C. F., Polymer Sci. and Techn.7, 12 (1976).

    Google Scholar 

  24. Ang, F., H. Mark, Monatsh. Chem.88, 427 (1957).

    Google Scholar 

  25. Mizutani,Y., S. Matsuoka, Y. Yamamoto, Bull. Chem. Soc. Japan 38, 2045 (1965).

    Google Scholar 

  26. Reich, L., S. S. Stivala, J. Appl. Polymer Sci.12, 2039 (1968).

    Google Scholar 

  27. Nemzek, T. L., J. E. Guillet, Macromolecules10, 94 (1977).

    Google Scholar 

  28. Wunderlich, B., Macromolecular Physics vol. 1, Academic Press (New York 1973).

    Google Scholar 

  29. Lovinger, A. J., J. O. Crua, C. C. Gryte, J. Polymer Sci. Polymer Phys. Ed.15, 641 (1977).

    Google Scholar 

  30. Schard, M. P., C. A. Russel, J. Appl. Polymer Sci.8, 985 (1964).

    Google Scholar 

  31. Maňasek, Z., D. Berek, M. Mićo, M. Lazar, Yu. Pavlinec, Vysokomol. Sojed.3, 1104 (1961).

    Google Scholar 

  32. Matisová-Rychlá, L., P. Ambrovič, N. Kuličková, J. Rychly, J. Polymer Sci. Polymer Symp.57, 181 (1976).

    Google Scholar 

  33. Goldfarb, L., C. R. Feltz, D. C. Messersmith, J. Polymer Sci. A-210, 3289 (1972).

    Google Scholar 

  34. Crank, J., The Mathematics of Diffusion, Oxford University Press (London 1956).

    Google Scholar 

  35. Mucha, M. (in preparation).

  36. Peterlin, A., J. Macromol. Sci.B11, 57 (1975).

    Google Scholar 

  37. Michaels, A. S., R. B. Parker, J. Polymer Sci.41, 53 (1959).

    Google Scholar 

  38. A. Michaels, A. S., H. J. Bixler, J. Polymer Sci.50, 413 (1961).

    Google Scholar 

  39. Jellinek, H. H. G., Degradation of Vinyl Polymers, Academic Press (London 1955).

    Google Scholar 

  40. Boss, C. R., J. C. Chien, J. Polymer Sci. A-1,4, 1543 (1966).

    Google Scholar 

  41. Mucha, M. (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. G. Rehage on occasion of his 60th birthday

With 8 figures and 1 table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mucha, M., Kryszewski, M. The effect of morphology on thermal stability of isotactic polypropylene in air. Colloid & Polymer Sci 258, 743–752 (1980). https://doi.org/10.1007/BF01384365

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01384365

Keywords

Navigation