Skip to main content
Log in

Symplectic integration of Hamiltonian wave equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The numerical integration of a wide class of Hamiltonian partial differential equations by standard symplectic schemes is discussed, with a consistent, Hamiltonian approach. We discretize the Hamiltonian and the Poisson structure separately, then form the the resulting ODE's. The stability, accuracy, and dispersion of different explicit splitting methods are analyzed, and we give the circumstances under which the best results can be obtained; in particular, when the Hamiltonian can be split into linear and nonlinear terms. Many different treatments and examples are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ablowitz, M., Herbst, B.M. (1990): On homoclinic structure and numerically induced chaos for the non-linear Schrödinger equation. SIAM J. Appl. Math.50 (2), 339–351

    Google Scholar 

  • Ablowitz, M.J., Schober, C., Herbst, B.M. (1993): Numerical chaos, roundoff error, and unstable wave processes (submitted to Phys. Rev. Lett.)

  • Arnol'd, V. (1978): Mathematical Methods of Classical Mechanics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Candy, J., Rozmus, W. (1991): A symplectic integration algorithm for separable hamiltonian functions. J. Comput. Phys.92, 230–256

    Google Scholar 

  • Dai, W. (1992): An unconditionally stable three-level explicit difference scheme for the Schrodinger equation with a variable coefficient. SIAM J. Num. Anal.29 (1), 174

    Google Scholar 

  • de Frutos, J., Ortega, T., Sanz-Serna, J.M. (1991): Pseudospectral method for the “good” Boussinesq equation. Math. Comput.57 (195), 109–122

    Google Scholar 

  • de Frutos, J., Ortega, T., Sanz-Serna, J.M. (1990): A Hamiltonian, explicit algorithm with spectral accuracy for the “good” Boussinesq equation. Comput. Meth. Appl. Mech. Eng.80, 417–423

    Google Scholar 

  • de Frutos, J., Sanz-Serna, J.M. (1991): An easily implementable fourth-order method for the time-integration of wave problems. Report 1991/2. Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Valladolid, Spain

    Google Scholar 

  • Fei, Z., Vasquez, L. (1991): Two energy-conserving numerical schemes for the Sine-Gordon equation. App. Math. Comput.45 (1), 17–30

    Google Scholar 

  • Feng, K., Qin, M.-Z. (1987): The symplectic methods for the computation of Hamiltonian equations. In: Z. You-lan, G. Ben-yu, eds., Numerical methods for partial differential equations. Proceeding Shanghai 1986 Lecture Notes in Mathematics1297, pp. 1–37 Springer, Berlin-Heidelberg-New York

    Google Scholar 

  • Forest, M.G., Goedde, C.G., Sinha, A. (1992): Instability-driven energy transport in near-integrable, many degree-of-freedom, Hamiltonian systems. Phys. Rev. Lett.68 (18), 2722–2724

    Google Scholar 

  • Ge, Z., Marsden, J.E. (1988): Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A133, 134–139

    Google Scholar 

  • Glassey, R.T. (1992): Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comput.58 (197), 83–102

    Google Scholar 

  • Glassey, R.T., Schaeffer, J. (1991): Convergence of a second-order scheme for semilinear hyperbolic equations in 2+1 dimensions. Math. Comput.56 (193) 87

    Google Scholar 

  • Ivanauskas, F.F. (1991): Difference schemes for nonlinear equations of Schrödinger type. Sov. Math. Doklady42 (2), 287–291

    Google Scholar 

  • MacKay, R.S. (1992): Some aspects of the dynamics and numerics of Hamiltonian systems. In: D.S. Broomhead, A. Iserles, eds. The dynamics of numerics and the numerics of dynamics, pp. 137–193. Clarendon Press, Oxford: Oxford University Press, New York

    Google Scholar 

  • MacKay, R.S. (1986): Stability of equilibria of Hamiltonian systems. In: S. Sarkar, ed., Nonlinear phenomena and chaos, pp. 254–270. Hilger, Briston Boston

    Google Scholar 

  • McLachlan, R.I., Atela, P. (1992): The accuracy of symplectic integrators. Nonlinearity5, 541–562

    Google Scholar 

  • Okunbor, D.I., Skeel, R.D (1992): Canonical Runge-Kutta-Nyström methods of orders 5 and 6 (submitted to Math. Comput.)

  • Olver, P.J. (1986): Applications of Lie groups to differential equations. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Olver, P.J. (1988): Darboux' theorem for Hamiltonian differential operators. J. Differ. Equations71 (1), 10–33

    Google Scholar 

  • Roberts, J.A.G., Quispel, G.R.W. (1991): Chaos and time-reversal symmetry: order and chaos in reversible dynamical systems. Physics Report 91-32, Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

    Google Scholar 

  • Ruth, R.D. (1983): A canonical integration technique.IEEE Trans. Nucl. Sci. NS-30, 2669–2671

    Google Scholar 

  • Sanz-Serna, J.M., Abia, L. (1991): Order conditions for Canonical Runge-Kutta schemes. SIAM J, Numer. Anal.28 (4), 1081–1096

    Google Scholar 

  • Strauss, W.A. (1989): Nonlinear wave equations. AMS Regional Conference Series no. 73. AMS, Providence

    Google Scholar 

  • Suzuki, M. (1991): General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys.32 (2), 400–407

    Google Scholar 

  • Yoshida, H. (1990): Construction of higher order symplectic integrators. Phys. Lett. A150, 262–269

    Google Scholar 

  • Yoshida, H. (1991): Conserved quantities of sympletic integrators for Hamiltonian systems (preprint)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLachlan, R. Symplectic integration of Hamiltonian wave equations. Numer. Math. 66, 465–492 (1993). https://doi.org/10.1007/BF01385708

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385708

Mathematics Subject Classification (1991)

Navigation