Skip to main content
Log in

Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

This paper deals with polynomial approximations ø(x) to the exponential function exp(x) related to numerical procedures for solving initial value problems. Motivated by positivity and contractivity requirements imposed on these numerical procedures we study the smallest negative argument, denoted by −R(ø), at which ø is absolutely monotonic. For given integersp≧1,m≧1 we determine the maximum ofR(ø) when ø varies over the class of all polynomials of a degree ≦m with\(\phi \left( x \right) = \exp \left( x \right) + \mathcal{O}\left( {x^{p + 1} } \right)\left( {for x \to 0} \right)\) (forx→0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. New York: Dover 1965

    Google Scholar 

  2. Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. RAIRO Anal. Numer.12, 237–245 (1978)

    Google Scholar 

  3. Dahlquist, G.: A special stability problem for linear multistep methods. BIT3, 27–43 (1963)

    Google Scholar 

  4. Jeltsch, R., Nevanlinna, O.: Largest disk of stability of explicit Runge-Kutta methods. BIT18, 500–502 (1978)

    Google Scholar 

  5. Jeltsch, R., Nevanlinna, O.: Stability of explicit time discretizations for solving initial value problems. Numer. Math.37, 61–91 (1981)

    Google Scholar 

  6. Macon, N., Spitzbart, A.: Inverses of Vandermonde matrices. Am. Math. Mon.65, 95–100 (1958)

    Google Scholar 

  7. Mitchell, A.R., Griffiths, D.F.: The finite difference method in partial differential equations. Chichester: John Wiley 1980

    Google Scholar 

  8. Pólya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis. Berlin: Springer 1954

    Google Scholar 

  9. Richtmyer, R.D., Morton, K.W.: Difference methods for initial — value problems (second edition). New York: John Wiley 1967

    Google Scholar 

  10. Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math.42, 271–290 (1983)

    Google Scholar 

  11. Spijker, M.N.: Numerical contractivity in the solution of initial value problems. In: Numerische Behandlung von Differentialgleichungen (K. Strehmel, ed.), pp. 118–124. Halle (DDR): Martin-Luther-Universität Halle-Wittenberg 1984

    Google Scholar 

  12. Spijker, M.N.: Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Report 84-04, Inst. Appl. Math. Comput. Sci., Univ. Leiden 1984. Math. Comput. 1985 (To appear)

  13. Stetter, H.J.: Analysis of discretization methods for ordinary differential equations. Berlin: Springer 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraaijevanger, J.F.B.M. Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48, 303–322 (1986). https://doi.org/10.1007/BF01389477

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389477

Subject Classfications

Navigation