Skip to main content
Log in

Numerical solution of retarded initial value problems: Local and global error and stepsize control

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Retarded initial value problems are routinely replaced by an initial value problem of ordinary differential equations along with an appropriate interpolation scheme. Hence one can control the global error of the modified problem but not directly the actual global error of the original problem. In this paper we give an estimate for the actual global error in terms of controllable quantities. Further we show that the notion of local error as inherited from the theory of ordinary differential equations must be generalized for retarded problems. Along with the new definition we are led to developing a reliable basis for a step selection scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arndt, H.: Zur Schrittweitensteuerung bei retardierten Anfangswertproblemen, Z. Angew. Math. Mech.63, 337–338 (1983)

    Google Scholar 

  2. Arndt, H.: The influence of interpolation on the global error in retarded differential equations. In: Differential-difference equations (Collatz, Meinardus, Wetterling, eds.), ISNM Vol. 62, pp. 9–17, Boston: Birkhäuser 1983

    Google Scholar 

  3. Cryer, C.W.: Numerical methods for functional differential equations. In: Schmitt, K. (ed.). Delay and functional differential equations and their applications. New York: Academic Press 1972

    Google Scholar 

  4. Dekker, K., Verwer, J.G.: Estimating the global error of Runge-Kutta approximations. In: Differential-difference equations (Collatz Meinardus, Wetterling, eds.), ISNM Vol. 62, pp. 55–71, Boston: Birkhäuser 1983

    Google Scholar 

  5. Driver, R.D.: Existence theory for a delay-differential system, contributions to differential equations1, 317–336 (1963)

  6. Driver, R.D.: Ordinary and delay differential equations. Berlin-Heidelberg-New York: Springer 1977

    Google Scholar 

  7. Fox, L., Mayers, D.F., Ockendon, J.R., Tayler, A.B.: On a functional differential equation. J. Inst. Math. Appl.8, 271–307 (1971)

    Google Scholar 

  8. Hale, J.: Theory of functional differential equations. Berlin-Heidelberg-New York: Springer 1977

    Google Scholar 

  9. Haverkamp, R.: Ein numerisches Verfahren zur Lösung retardierter Differentialgleichungen. Z. Angew. Math. Mech.63, 351–352 (1983)

    Google Scholar 

  10. van der Houwen, P.J.: Construction of integration formulas for initial value problems. Amsterdam: North-Holland Publishing Company 1977

    Google Scholar 

  11. van der Houwen, P.J., Sommeijer, B.P.: Improved absolute stability of predictor-corrector methods for retarded differential equations. In: Differential-difference, equations (Collatz, Meinardus, Wetterling, eds.) ISNM Vol. 62, pp. 137–148, Boston: Birkhäuser 1983

    Google Scholar 

  12. Neves, K.W.: Automatic integration of functional differential equations: An approach. ACM Trans. Math. Software1 357–368 (1975)

    Article  Google Scholar 

  13. Neves, K.W.: Algorithm 497 - automatic integration of functional differential equations. Collected Algorithms from ACM (1975)

  14. Neves, K.W., Feldstein, A.: Characterization of jump discontinuities for state dependent delay differential equations. J. Math. Anal. Appl.56, 689–707 (1976)

    Article  Google Scholar 

  15. Oberle, H.J., Pesch, H.J.: Numerical treatment of delay differential equations by Hermiteinterpolation. TUM-M8001, Techn. Univ. München 1980

  16. Oberle, H.J., Pesch, H.J.: Numerical treatment of delay differential equations by Hermiteinterpolation. Numer. Math.37, 235–255 (1981)

    Google Scholar 

  17. Oppelstrup, J.: The RKFHB4 method for delay-differential equations. Lecture Notes in Mathematics631, 133–146. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  18. Oppelstrup, J.: One-step methods with interpolation for Volterra functional differential equations. TRITA-NA-7623 Roy. Inst. Tech. Stockholm 1976

  19. Shampine, L.F., Watts, H.A.: Global error estimation for ordinary differential equations. ACM Trans. Math. Software2, 172–186 (1976)

    Article  Google Scholar 

  20. Stetter, H.J.: Numerische Lösung von Differentialgleichungen mit nacheilendem Argument. Z. Angew. Math. Mech.45, T79–80 (1965)

    Google Scholar 

  21. Stetter, H.J.: Analysis of discretization methods for ordinary differential equations. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  22. Stetter, H.J.: Global error estimation in Adams PC-Codes. ACM Trans. Math. Software5, 415–430 (1979)

    Article  Google Scholar 

  23. Stetter, H.J.: Interpolation and error estimation in Adams PC-Codes. SIAM J. Numer. Anal.16, 311–323 (1979)

    Article  Google Scholar 

  24. Tavernini, L.: The approximate solution of Volterra differential systems with state-dependent time lags. SIAM J. Numer. Anal.15, 1039–1052 (1978)

    Article  Google Scholar 

  25. Waltman, P.: Deterministic threshold models in the theory of epidemics. Lecture Notes in Biomathematics 1. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  26. Werner, H.: Ein einfacher Existenzbeweis für das deterministische Epidemienmodell von Waltman and Hoppensteadt. Schriftenreihe des Rechenzentrums der Universität Münster 45, 1980

  27. Werner, H., Schaback, R.: Praktische mathematik II, 2. Auflage. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  28. Bock, H.G., Schlöder, J.: Numerical solution of retarded differential equations with statedependent time lags. Z. Angew. Math. Mech.61, T269–271 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, H. Numerical solution of retarded initial value problems: Local and global error and stepsize control. Numer. Math. 43, 343–360 (1984). https://doi.org/10.1007/BF01390178

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01390178

Subject Classifications

Navigation