Skip to main content
Log in

A method for computing the tension parameters in convexity-preserving spline-in-tension interpolation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

This paper is concerned with the problem of convexity-preservng (orc-preserving) interpolation by using Exponential Splines in Tension (or EST's). For this purpose the notion of ac-preserving interpolant, which is usually employed in spline-in-tension interpolation, is refined and the existence ofc-preserving EST's is established for the so-calledc-admissible data sets. The problem of constructing ac-preserving and visually pleasing EST is then treated by combining a generalized Newton-Raphson method, due to Ben-Israel, with a step-length technique which serves the need for “visual pleasantness”. The numerical performance of the so formed iterative scheme is discussed for several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkins, D.A., Berger, S.A., Webster, W.C., Tapia, R.: Mathematical ship lofting. J. Ship Res.10, 203–222 (1966)

    Google Scholar 

  2. Ben-Israel, A.: On iterative methods for solving nonlinear least squares problems over convex sets. Israel J. Math.5, 211–224 (1967)

    Google Scholar 

  3. Bézier, P.: Numerical Control, Translated from the French Edition, Editions Masson et Cie. Paris (1970), London: Wiley (1972)

    Google Scholar 

  4. Buczkowski, L.: Mathematical construction, approximation and design of the ship body form. J. Ship Res.13, 185–206 (1969)

    Google Scholar 

  5. de Boor, C.: A practical guide to splines. Appl. Math. Sciences No 27. Berlin Heidelberg New York, Springer (1978)

    Google Scholar 

  6. Cline, A.K.: Scalar and planar valued curve fitting using splines under tension. Comm. ACM17, 218–223 (1974)

    Article  Google Scholar 

  7. Encarnacao, J., Schlechtendahl, E.G.: Computer Aided Design. Berlin Heidelberg New York: Springer (1983)

    Google Scholar 

  8. Ford, W.T., Roulier, J.A.: On interpolation and approximation by polynomials with monotone derivatives. J. Approximation Theory10, 123–130 (1974)

    Article  Google Scholar 

  9. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal.17, 238–246 (1980)

    Article  Google Scholar 

  10. Golub, G.H.: Numerical methods for solving linear least least squares problems. Numer. Math.7, 206–216 (1965)

    Google Scholar 

  11. Gregory, J.A., Delbourgo, R.: Piecewise rational quadratic interpolation to monotonic data. IMA J. Numer. Anal.2, 123–130 (1982)

    Google Scholar 

  12. Ioffe, A.D., Tihomirov, V.M.: Theory of extremal problems. Translated from the Russian Edition, Moskow: Nauka (1974) Amsterdam North-Holland (1979)

    Google Scholar 

  13. Lynch, R.W.: A method for chosing a tension factor for spline under tension interpolation, M.S. Thesis, University of Texas at Austin (1982)

  14. McAllister, D.F., Roulier, J.A.: Interpolation by convex quadratic splines. Math. Comput.32, 1154–1162 (1978)

    Google Scholar 

  15. McAllister, D.F., Passow, E., Roulier, J.A.: Algorithms for computing shape preserving spline interpolations to data. Math. Comput.3, 717–725 (1977)

    Google Scholar 

  16. Passow, E.: Piecewise monotone spline interpolation. J. Approximation Theory12, 240–241 (1974)

    Article  Google Scholar 

  17. Passow, E., Raymon, L.: The degree of piecewise monotone interpolation. Proc. Amer. Math. Soc.48, 409–412 (1975)

    Google Scholar 

  18. Passow, E.: An improved estimate of the degree of monotone interpolation. J. Approximation Theory17, 115–118 (1976)

    Article  Google Scholar 

  19. Passow, E.: Monotone quadratic spline interpolation. J. Approximation Theory19, 143–147 (1977)

    Article  Google Scholar 

  20. Pruess, S.: Properties of splines in tension. J. Approx. Theory17, 86–96 (1976)

    Article  Google Scholar 

  21. Pruess, S.: Alternatives to the exponential spline in tension. Math. Comput.33, 1273–1281 (1979)

    Google Scholar 

  22. Rentrop, P.: An algorithm for the computation of the exponential spline. Numer. Math.35, 81–93 (1980)

    Article  Google Scholar 

  23. Rubinstein, Z.: On polynomial δ-type functions and approximation by monotonic polynomials. J. Approximation Theory3, 1–6 (1970)

    Article  Google Scholar 

  24. Schweikert, D.: An interpolation curve using a spline in tension. J. Math. Phys.45, 312–317 (1966)

    Google Scholar 

  25. Späth, H.: Exponential spline interpolation. Computing4, 225–233 (1969)

    Google Scholar 

  26. Young, S.W.: Piecewise monotone polynomial interpolation. Bull. Amer. Math.73, 642–643 (1967)

    Google Scholar 

  27. Sakai, M., López de Silanes, M.C.: A simple rational spline and its application to monotonic interpolation to monotonic data. Numer. Math.50, 171–182 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapidis, N.S., Kaklis, P.D. & Loukakis, T.A. A method for computing the tension parameters in convexity-preserving spline-in-tension interpolation. Numer. Math. 54, 179–192 (1989). https://doi.org/10.1007/BF01396973

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01396973

Subject Classifications

Navigation