Skip to main content
Log in

Numerical integration by means of adapted Euler summation formulas

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The purpose of the paper is the study of formulas and methods for numerical integration based on Euler summation formulas. Cubature formulas are developed from multidimensional generalizations. Estimates of the truncation error are given in adaptation to specific properties of the integrand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brass, H.: Quadraturverfahren. Göttingen: Vandenhoeck & Ruprecht 1977

    Google Scholar 

  2. Brosowski, B., Kreß, R.: Einführung in die numerische Mathematik I und II. Mannheim, Wien, Zürich: B.I. Wissenschaftsverlag 1975, 1976

    Google Scholar 

  3. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  4. Courant, R., Hilbert, D.: Methoden der Mathematischen Physik I, II. Berlin, Heidelberg, New York: Springer 1968

    Google Scholar 

  5. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd ed. New York, San Francisco, London: Academic Press 1984

    Google Scholar 

  6. Engels, H.: Numerical Quadrature and Cubature. London, New York, Toronto, Sydney, San Francisco: Academic Press 1980

    Google Scholar 

  7. Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys.64, 253–287 (1921)

    Google Scholar 

  8. Freeden, W.: Über eine Verallgemeinerung der Hardyschen Identität. Dissertation, Aachen 1975

  9. Freeden, W.: Eine Verallgemeinerung der Hardy-Landauschen Identität. Manuscripta Math.24, 205–216 (1978)

    Google Scholar 

  10. Freeden, W., Reuter, R.: A Class of Multidimensional Periodic Splines. Manuscripta Math.35, 371–386 (1981)

    Google Scholar 

  11. Freeden, W.: Multidimensional Euler Summation Formulas and Numerical Cubature. ISNM57, 77–88 (1982)

    Google Scholar 

  12. Fricker, F.: Einführung in die Gitterpunktlehre. Basel: Birkhäuser 1982

    Google Scholar 

  13. Gauss, C.F.: De nexu inter multitudinem classicum, in quas formae binariae secundi gradus distribuuntur, earumque determinantem. Werke2, 269–291 (1863)

    Google Scholar 

  14. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals Series and Products. New York, London: Academic Press 1965

    Google Scholar 

  15. Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Leipzig, Berlin: Teubner 1912

    Google Scholar 

  16. Hlawka, E.: Über Integrale auf konvexen Körpern I. Monatshefte für Mathematik54, 1–37 (1950)

    Google Scholar 

  17. Henrici, P.K.: Elements of Numerical Analysis. New York: John Wiley 1964

    Google Scholar 

  18. Kellogg, O.D.: Foundations of Potential Theory. New York: Dover 1954

    Google Scholar 

  19. Lekkerkerker, C.G.: Geometry of Numbers. Amsterdam, London: North Holland 1969

    Google Scholar 

  20. Lyness, J.N.: The Calculation of Trigonometric Fourier Coefficients. J. Comput. Phys.54, 57–73 (1984)

    Google Scholar 

  21. Magnus, W., Oberhettinger, F.: Formeln und Sätze für die speziellen Funktionen, der Mathematischen Physik. Berlin, Göttingen, Heidelberg: Springer 1948

    Google Scholar 

  22. Mikhlin, S.G.: Mathematical Physics, and Advanced Course. Amsterdam, London: North Holland 1970

    Google Scholar 

  23. Mordell, L.J.: Poissons Summation Formula in Several Variables. Cambr. Phil. Soc.25, 412–420 (1928/29)

    Google Scholar 

  24. Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Berlin, Heidelberg, New York: Springer 1969

    Google Scholar 

  25. Müller, C., Freeden, W.: Multidimensional Euler and Poisson Summation Formulas. Result. Math.3, 33–63 (1980)

    Google Scholar 

  26. Nijboer, B.R.A., de Wette, F.W.: On the Calculation of Lattice Sums. PhysicaXXIII, 309–321 (1957)

    Google Scholar 

  27. Oberhettinger, F.: Fourier Expansions: A Collection of Formulas. New York, London: Academic Press 1973

    Google Scholar 

  28. Stetter, H.J.: Numerical Approximation of Fourier transforms. Numer. Math.8, 235–249 (1966)

    Google Scholar 

  29. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. New York, Heidelberg, Berlin: Springer 1980

    Google Scholar 

  30. Törnig, W.: Numerische Mathematik für Ingenieure und Physiker. Bd. 2: Eigenwertprobleme und numerische Methoden der Analysis. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  31. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge: Cambridge University Press 1944

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeden, W., Fleck, J. Numerical integration by means of adapted Euler summation formulas. Numer. Math. 51, 37–64 (1987). https://doi.org/10.1007/BF01399694

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01399694

Subject Classifications

Navigation