Skip to main content
Log in

Self-diffusion of small molecules in colloidal systems

  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The self-diffusion of small molecules in colloidal systems is calculated using the cell model to describe the effect of varying concentration of colloidal particles. The relevant boundary conditions are found using arguments from the thermodynamics of irreversible processes. From a general description of the self-diffusion in systems with spherically symmetrical particles we derive expressions for the concentration dependence of the effective self-diffusion coefficientD eff for several cases of practical importance. It is shown that when the molecule studied is strongly attracted to the particle a minimum inD eff is expected around volume fractionΦ=0.35. It is also shown that the often made distinction between free and bound molecules is often problematic and a more general description is proposed. The obstruction effect generated by the excluded volume is discussed both for spherical and spheroidal systems. It is pointed out that the often used formula due to Wang ((1954) J Amer Chem Soc 76:4755) is incorrect for self-diffusion and for the obstruction factor for spheres we obtain (1+0.5Φ)−1. This expresion is tested both by experiments on water diffusion in systems containing latex particles and through computer simulations and it is found valid over a wide concentration range. For prolate ellipsoids the obstruction factor is not greatly different from that for spheres, while for oblate aggregates the limiting obstruction factor of 2/3 can be obtained at low concentrations. It is demonstrated that this effect can be used to distinguish between different aggregate shapes. It is also shown that the disorder present in a solution of colloidal particles leads to a decrease in the obstruction effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishijima Y, Oster G (1956) J Polym Sci 19:337

    Google Scholar 

  2. Biancheria A, Kegeles G (1957) J Amer Chem Soc 79:5908

    Google Scholar 

  3. Rymdén R, Carlfors J, Stilbs P (1983) J Inclusion Phenom 1:159

    Google Scholar 

  4. von Meerwall E (1983) Adv Polym Sci 51:1

    Google Scholar 

  5. Huizenga JR, Grieger RF, Wall FT (1950) J Amer Chem Soc 72:4223

    Google Scholar 

  6. Magdelenat H, Turq P, Tivant P, Chemla M, Menez R, Drifford M (1979) Biopolym 18:187

    Google Scholar 

  7. Ander P, Lubas W (1981) Macromol 14:1058

    Google Scholar 

  8. Wang JH (1954) J Amer Chem Soc 76:4755

    Google Scholar 

  9. Salvinien J, Brun B, Kamenka N (1971) Ber Bunsenges Phys Chem 75:199

    Google Scholar 

  10. Sandeaux J, Kamenka N, Brun B (1978) J Chim Phys 75:895

    Google Scholar 

  11. Kamenka N, Lindman B, Brun B (1974) Coll & Polym Sci 252:144

    Google Scholar 

  12. Stilbs P, Lindman B (1981) J Phys Chem 85:2587

    Google Scholar 

  13. Fabre H, Kamenka N, Lindman B (1981) J Phys Chem 85:3493

    Google Scholar 

  14. Lindman B, Kamenka N, Kathopoulis TM, Brun B, Nilsson PG (1980) J Phys Chem 84:2485

    Google Scholar 

  15. Lindman B, Stilbs P (1984) (eds) Mittal KL, Lindman B, Surfactants in Solution, Vol 3, Plenum Press, New York, p 1651

    Google Scholar 

  16. Lindblom G, Wennerström H (1977) Biophys Chem 6:167

    PubMed  Google Scholar 

  17. Callaghan P, Söderman O (1983) J Phys Chem 87:1737

    Google Scholar 

  18. Muhr AH, Blanshard JMV (1982) Polym 23:1012

    Google Scholar 

  19. Crank J (1975) The Mathematics of Diffusion, Oxford University Press

  20. Nilsson PG, Lindman B (1983) J Phys Chem 87:4756

    Google Scholar 

  21. Nilsson PG, Lindman B (1984) J Phys Chem 88:4764

    Google Scholar 

  22. Hill TL (1960) Introduction to statistical thermodynamics, Addison-Wesely, Reading, MA, USA, Chap 16

    Google Scholar 

  23. Fouss RM, Katchalsky A, Lifson S (1951) Proc Natl Acad Sci USA 37:579

    Google Scholar 

  24. Marcus RA (1955) J Chem Phys 23:1057

    Google Scholar 

  25. Mille M, Vanderkooi G (1977) J Coll Interf Sci 59:211

    Google Scholar 

  26. Gunnarsson G, Jönsson B, Wennerström H (1980) J Phys Chem 84:3114

    Google Scholar 

  27. Jönsson B, Wennerström H (1981) J Coll Interf Sci 80:482

    Google Scholar 

  28. Lifson S, Jackson JL (1962) J Chem Phys 36:2410

    Google Scholar 

  29. Coriell SR, Jackson JL (1963) J Chem Phys 39:2418

    Google Scholar 

  30. Bell GM (1964) Trans Farad Soc 60:1752

    Google Scholar 

  31. Bell GM, Dunning AJ (1970) Trans Farad Soc 66:500

    Google Scholar 

  32. Yoshida N (1978) J Chem Phys 69:4867

    Google Scholar 

  33. Belloni L, Drifford M, Turq P (1984) J Chem Phys 83:147

    Google Scholar 

  34. Nilsson LG, Nordenskiöld L, Stilbs P, Braunlin WH (1985) J Phys Chem 89:3385

    Google Scholar 

  35. Jönsson AS (1983) A new method for the estimation of residual lignin content in paper pulp, Thesis, University of Lund

  36. Sjöblom J, Jönsson B, Nylander C, Lundström I (1984) J Coll Interf Sci 100:27

    Google Scholar 

  37. Rymdén R, Carlfors J (1982) Polym 23:325

    Google Scholar 

  38. Reiche LE (1980) A modern course in statistical physics, Edward Arnold, London, Chap 14

    Google Scholar 

  39. Prigogine I (1967) Introduction to thermodynamics of irreversible processes, Wiley, New York

    Google Scholar 

  40. Bak TA (1955) J Phys Chem 59:665

    Google Scholar 

  41. Bak TA (1956) J Phys Chem 60:1611

    Google Scholar 

  42. van Beek LKH (1967) Progress in Dielectrics 7:69

    Google Scholar 

  43. Hashin Z, Shtrikman S (1962) J Appl Phys 33:3125

    Google Scholar 

  44. Fricke H (1924) Phys Rev 24:575

    Google Scholar 

  45. Lord Rayleigh (1892) Phil Mag 34:481

    Google Scholar 

  46. van Megen W, Snook I (1984) J Chem Soc Farad Trans 2, 80:383

    Google Scholar 

  47. Nilsson PG, Wennerström H, Lindman B (1983) J Phys Chem 87:1377

    Google Scholar 

  48. Stilbs P, Lindman B (1984) J Coll Interf Sci 99:290

    Google Scholar 

  49. Piculell L, Halle B (1986) J Chem Soc Faraday Trans, I 82, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jönsson, B., Wennerström, H., Nilsson, P.G. et al. Self-diffusion of small molecules in colloidal systems. Colloid & Polymer Sci 264, 77–88 (1986). https://doi.org/10.1007/BF01410310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01410310

Key words

Navigation