Skip to main content
Log in

Dielectric relaxation in polymeric solids Part 1. A new model for the interpretation of the shape of the dielectric relaxation function

  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A model is proposed which explains the shape of the dielectric relaxation function at the glass transition of polymers. The model is based on the idea that the molecular mobility at the glass transition is controlled by intra- and intermolecular interaction. In addition, a specific model for the local chain dynamics in amorphous polymer systems is used. According to the scaling hypothesis of molecular dynamics the model relates the high frequency dependence of the dielectric loss curve to the local chain dynamics and the low frequency dependence to the intermolecular correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jonscher AK (1983) Dielectric Relaxation in Solids. Chelsea Dielectrics Press, London

    Google Scholar 

  2. Dissado LA, Hill RM (1983) Proc R Soc London A390:131

    Google Scholar 

  3. Hamon BV (1952) Proc Instn Electr Engr IV 27:151

    Google Scholar 

  4. Hill RM (1978) Nature 275:96

    Google Scholar 

  5. Ikada E, Sugimura T, Watanabe T (1978) J Polym Sci Polym Phys Ed 16:907

    Google Scholar 

  6. Yoshihara M, Work RN (1980) J Chem Phys 72:5909

    Google Scholar 

  7. Ngai KL (1979) Comments on Solid State Physics 9:127

    Google Scholar 

  8. Montroll EW, Bendler JT (1984) J Statistical Physics 34:129

    Google Scholar 

  9. Donth E (1981) Glasübergang. Akademie Verlag, Berlin

    Google Scholar 

  10. Landau L, Lifschitz EM (1979) Lehrbuch der theoretischen Physik. Band V, Akademie Verlag, Berlin

    Google Scholar 

  11. Donth E, Schneider K (1985) Acta Polymerica 36:273

    Google Scholar 

  12. Viovy JL, Monnerie L, Brochon JC (1983) Macromolecules 16:1845

    Google Scholar 

  13. Laupretre F (1986) 8 Tagung Polymerphysik, Leipzig

  14. Shore JE, Zwanzig R (1975) J Chem Phys 63:5445

    Google Scholar 

  15. Skolnik J, Yaris R (1985) Macromolecules 18:1635

    Google Scholar 

  16. Valeur B, Jarry JR, Geny F, Monnerie L (1975) 13:667, 675, 2251

  17. Hall CK, Helfand E (1982) J Chem Phys 77:3275

    Google Scholar 

  18. Schlosser E, Schönhals A (1988) unpublished results

  19. Kenkre VM, Montroll EW, Shlesinger MF (1973) J Statistical Mechanics 9:45

    Google Scholar 

  20. Montroll EW, Lebowitz JL (1979) Studies in Statistical Mechanics. North-Holland Publ Co

  21. Webman J, Kalfter J (1982) Phys Rev B26:5950

    Google Scholar 

  22. Abramowitz M, Stegun IA (1965) Handbook of Mathematical Functions. Doover Press, New York

    Google Scholar 

  23. Schönhals A, Donth E (1984) phys stat solidi (b) 124:515

    Google Scholar 

  24. Nigmatullin RR, Hill RM (1983) phys stat solidi (b) 118:769

    Google Scholar 

  25. Rosanow JA (1975) Stochastische Prozesse. Akademie Verlag, Berlin

    Google Scholar 

  26. Schlosser E, Schönhals A (1989) following paper

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönhals, A., Schlosser, E. Dielectric relaxation in polymeric solids Part 1. A new model for the interpretation of the shape of the dielectric relaxation function. Colloid & Polymer Sci 267, 125–132 (1989). https://doi.org/10.1007/BF01410350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01410350

Key words

Navigation