Skip to main content
Log in

Problems and results of zeta-potential measurements on fibers

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A survey is given on both theoretical background and methodical details of zeta-potential measurements on fibers. Electro-osmosis and streaming potential/streaming current measurements can be used in order to obtain correct zeta-potentials. Both measuring principles yield the same values for zeta-potential if the errors due to resistance measurements are avoided. This agreement as well as the independence of zeta-potential of applied voltage (in the case of electro-osmosis) and hydrostatic pressure (in the case of streaming potential/streaming current) point out that the Stern-potential at the boundary immobile/diffuse layer can be determined. Electrophoresis and measurement of other electrokinetic phenomena give values related to but not identical with the zeta-potential. Applications of electrokinetic measurements for investigating fiber problems in production, processing and finishing are reviewed. Parameters determining the zeta-potential of fibers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melzer J (1972) Das Papier 26:305

    Google Scholar 

  2. Poppel E (1977) Rheologie und elektrokinetische Vorgänge in der Papiertechnologie, VEB Fachbuchverlag Leipzig

    Google Scholar 

  3. Weigl J (1977) Elektrokinetische Grenzflächenvorgänge, Verlag Chemie Weinheim

    Google Scholar 

  4. Schausberger A, Schurz J (1979) Angewandte Makromolek Chemie 80:1

    Google Scholar 

  5. Lindström T, Söremark C (1975) Das Papier 29:519

    Google Scholar 

  6. Hoffmann F, Müller F, Rohloff E, Tretter H (1975) Das Papier 29:529

    Google Scholar 

  7. Horn D, Melzer J (1975) Das Papier 29:534

    Google Scholar 

  8. Beck U, Müller F (1980) Acta Polymerica 31:504

    Google Scholar 

  9. Poppel E, Bicu J (1972) Das Papier 26:162

    Google Scholar 

  10. Beck U, Müller F, Tretter H (1981) Bayer Farbenrevue 31:27

    Google Scholar 

  11. Gee H, Harrison W (1910) Trans Faraday Soc 6:42

    Google Scholar 

  12. Neale SM, Peters RH (1946) Trans Faraday Soc 42:478

    Google Scholar 

  13. Vickerstaff T (1954) Melliand Textilber 35:765

    Google Scholar 

  14. Suzawa T (1959) Kogyo Kagku Zasshi, J Chem Soc Japan, Ind Chem Sect 62:332–336, 423–476, 1231–1234 (1960) 63:148–151, 1066–1068, 1069–1072, 1072–1075 (1962) 65:24–126, 127–131 (1963) 66:1001–1007

    Google Scholar 

  15. Lokhande HT, Salvi AS (1976) Colloid and Polymer Sci 254:1030

    Google Scholar 

  16. Androsov VF (1969) Textiltechnik 19:365

    Google Scholar 

  17. Glenz O, Beckmann W (1957) Melliand Textilber 38:296

    Google Scholar 

  18. Suzawa T, Saito T, Shinchara H (1967) Bulletin of the Chemical Society of Japan 40:1596

    Google Scholar 

  19. Androsov VF, Liverant VZ (1966) Sowj Beiträge Faserforsch Textiltechnik 3:653

    Google Scholar 

  20. Suzawa T, Kawakami K (1975) Kogyo Kagaku Zusshi, J Chem Soc Japan, Ind Chem Sect 78:1134

    Google Scholar 

  21. Filonenko VI, Androsov VF, Cursina LA, Kotij S (1977) Jsv vyssich uc Zav Technol tekstil Perm 120:66

    Google Scholar 

  22. Flath HJ, Saleh N (1980) Acta Polymerica 31:510

    Google Scholar 

  23. Jacobasch HJ, Bobeth W (1975) Das Papier 29:555

    Google Scholar 

  24. Jacobasch HJ (1980) Acta Polymerica 31:481

    Google Scholar 

  25. Jacobasch HJ (1980) Textiltechnik 30:756

    Google Scholar 

  26. Yue SG, Ehrler P (1975) Das Papier 29:547

    Google Scholar 

  27. Ehrler P, Rizk A, Scheffer D (1978) Mellian Textilber 59:864

    Google Scholar 

  28. Jacobasch HJ, Grosse I, Thiel B, Schmidt B, Schwertfeger J (1982) Textiltechnik 32:176

    Google Scholar 

  29. Jacobasch HJ, Flath HJ (1969) Faserforsch Textiltechnik 20:338

    Google Scholar 

  30. Wiedemann G, Jacobasch HJ (1972) Faserforsch Textiltechnik 23:261

    Google Scholar 

  31. Jacobasch HJ, Freitag KH (1979) Acta Polymerica 30:453

    Google Scholar 

  32. Ivanova GV, Voronkov MG, Charoharov AA, Tugaj ED, Ivanova NI, Balukov JL (1974) Z prikl chimii 47:1415

    Google Scholar 

  33. Weigl J, Kästner M (1982) Wbl Papierfabrik 110:559

    Google Scholar 

  34. v. Stackelberg M, Kling W, Benzel W, Wilke F (1954) Kolloid Z 135:67

    Google Scholar 

  35. Kling W, Lange H (1952) Kolloid Z 127:19

    Google Scholar 

  36. Durham K (1956) J appl Chem 6:153

    Google Scholar 

  37. Harris JC (1958) Text Res J 28:912

    Google Scholar 

  38. Lange H (1972) (ed) Cutler WG, Davis RC, in: Detergency, Theory and Test-Methods, Macrel Dekker Inc, New York

    Google Scholar 

  39. Graceva OI, Epinateva VJ (1968) Elektrokinetische Eigenschaften von Chrysotilasbest verschiedener Fundorte der UdSSR, Trudy issledov institut asbestozement (UdSSR) 26:22

    Google Scholar 

  40. Martinez E, Zuker GL (1960) J phys Chem 64:926

    Google Scholar 

  41. Kaden H, Wieker W, Wieker C (1981) Z anorg allgem Chem 481:175

    Google Scholar 

  42. Algie SE, Baird K, Foulds RA, Robinson VN (1974) Textile Res J 44:767

    Google Scholar 

  43. Baumann H, Schempp W, Marzinkowski JM (1980) Acta Polymerica 31:475

    Google Scholar 

  44. Stern O (1924) Z Elektrochemie 30:508

    Google Scholar 

  45. Sennet P, Olivier JP (1967) in: Chemistry and Physics of Interfaces, Amer Chem Soc Publ, Washington, S 73–92

    Google Scholar 

  46. Duchin SS (1974) (ed) Matijevic E, in: Surface and Colloid Science, John Wiley & Sons, New York, Vol 7

    Google Scholar 

  47. Hunter RJ (1981) Zeta Potential in Colloid Science, Academic Press, New York

    Google Scholar 

  48. Bockris JOM, Reddy AKN (1977) Modern Electrochemistry, Plenum Press, New York, Vol 2

    Google Scholar 

  49. Sonntag H (1977) Lehrbuch der Kolloidwissenschaft, VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  50. v. Helmholtz H (1879) Wied Ann 7:337

    Google Scholar 

  51. v. Smoluchowski M (1903) Bull Intern acad Sci Cracovie 184

  52. Saxen U (1892) Wied Ann 47:46

    Google Scholar 

  53. Wijga PWO (1946) Thesis, Utrecht

  54. Rutgers AJ, de Smet M (1947) Trans Faraday Soc 43:102

    Google Scholar 

  55. Briggs DR (1928) J Phys Chem 32:641

    Google Scholar 

  56. Fairbrother F, Mastin H (1924) J Chem Soc 75:2318–2331, 1494–2501

    Google Scholar 

  57. Goring D, Mason S (1950) Can J Res, Sect B 28:307

    Google Scholar 

  58. Sullivan RR, Hertel KL (1942) (ed) Kraemer EO, in: Advances in Colloid Sciences, Interscience Publ, New York, Vol 1

    Google Scholar 

  59. Neale S (1946) Trans Faraday Soc 42:473

    Google Scholar 

  60. Biefer G, Mason S (1959) Trans Faraday Soc 55:1239

    Google Scholar 

  61. Chang M, Robertson A (1967) Can J Chem Eng 45:66

    Google Scholar 

  62. Carman PC (1956) Flow of Gases through Porous Media, Academic Press, New York

    Google Scholar 

  63. Aichele W, Schollmeyer E, Herlinger H (1977) Makromol Chem 178:2025

    Google Scholar 

  64. Cyriacks JA, Williams DG (1968) J Colloid Interface Sci 26:446

    Google Scholar 

  65. Happel J, Brenner H (1965) Low Reynolds Number Hydrodynamics, Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  66. Levine S, Neale GH (1974) J Colloid Interface Sci 47:520

    Google Scholar 

  67. Anderson J, Koh W (1977) J Colloid Interface Sci 59:149

    Google Scholar 

  68. Onabe F (1978) J Appl Polym Sci 22:3495

    Google Scholar 

  69. Erk G, Schempp W, Schurz J (1975) GIT-Fachz Lab 19:772

    Google Scholar 

  70. Mugler G, Mugler P (1976) Zellstoff und Papier 5:137

    Google Scholar 

  71. Neale S, Peters R (1946) Trans Faraday Sci 42:478

    Google Scholar 

  72. Madan G, Shrivastava S (1973) J Coll Polym Sci 251:483

    Google Scholar 

  73. Mc Gregor R, Milicevic B (1966) Helv chim Acta 49:2195

    Google Scholar 

  74. Ives D, Jantz G (1961) Reference Electrodes, Academic Press, New York

    Google Scholar 

  75. Bull HB, Gortner RA (1931) J Phys Chem 35:309

    Google Scholar 

  76. Biefer G, Mason S (1954) J Coll Sci 9:20

    Google Scholar 

  77. Bondarenko VS, Androsov VF, Karslieva VI (1965) Russian J Phys Chem 39:549

    Google Scholar 

  78. Jacobasch HJ (1970) Textiltechnik 20:649

    Google Scholar 

  79. Oliew G, Bessau U, Kaden H (1981) Messen — steuern — regeln 24:341

    Google Scholar 

  80. Bauböck G (1983) Dissert, Universität Graz

  81. Schausberger A, Schurz J (1979) Das Papier 33:148

    Google Scholar 

  82. Schempp W (1975) Das Papier 29:514

    Google Scholar 

  83. Lafaye JF, Jaquelin G (1967) C R Acad Sci Pairs, Ser C 264:1523

    Google Scholar 

  84. Beck U, Zana P, Rohloff E (1978) Tappi 61:63

    Google Scholar 

  85. Beck U, Zana P, Rohloff E (1978) Wochbl f Papierfabrikation 5:181

    Google Scholar 

  86. Bauböck G, Schurz J, Jacobasch HJ, in Vorbereitung

  87. Börner M, Jacobasch HJ, unveröffentliche Ergebnisse

  88. Hunter R, Alexander A (1962) Colloid Interface Sci 17:78

    Google Scholar 

  89. Saleh N (1975) Dissertation, TZ Dresden

  90. Jacobasch HJ (1983) Oberflächenchemie faserbildender Polymeren, Akademie-Verlag, Berlin

    Google Scholar 

  91. Lokhande HT, Androsov VF, Golovanov EN (1970) Indian J of Technology 8:92

    Google Scholar 

  92. Elöd E, Schachowsky T (1942) Melliand Textiles 23:437

    Google Scholar 

  93. Luck WAP (1968) Kolloid Z 223:110

    Google Scholar 

  94. Iwadare Y (1970) Bull Chem Soc Japan 43:5364

    Google Scholar 

  95. Suzawa T (1966) Yugakaku, J Japan Oil Chemist's Soc 15:20 (1981) 30:539

    Google Scholar 

  96. Jacobasch HJ (1977) Dissertation B, Akademie der Wissenschaften der DDR

  97. Schempp W, Heß P, Krause T (1982) Das Papier 36:V 41

    Google Scholar 

  98. Onabe F (1978) J Appl Polym Sci 22:3495 (1979) 23:2909, 2999 (1980) 24:1629

    Google Scholar 

  99. Lindström T, Söremark C, Heinegard CH, Martin-Löf S (1975) Tappi 57:94

    Google Scholar 

  100. Kanamaru K (1968) Kolloid Z 168:115

    Google Scholar 

  101. Kanamaru K, Takada T (1940) Z phys Chem A 186:1

    Google Scholar 

  102. Suzawa T (1970) Senshoku kogyo, Dyeing Ind 18:534

    Google Scholar 

  103. Madan GL, Shrivastava SK (1977) Colloid and Polymer Sci 255:269

    Google Scholar 

  104. Jacobasch HJ (1978) Das Papier 32:436

    Google Scholar 

  105. Rabinov G, Heyman E (1943) J Phys Chem 47:665

    Google Scholar 

  106. Schempp W, Erk G, Schurz J (1973) Das Papier 27:483

    Google Scholar 

  107. Kale PD, Lokhande HT (1975) J Appl Polym Sci 19:461

    Google Scholar 

  108. Lokhande HT, Androsov VF, Golovanov EN (1970) Indian J of Technology 8:92

    Google Scholar 

  109. Bondarenko OS, Tugusi LA, Mamonova ET ua (1978) Sowj Beitr Faserforsch Textiltechnik 15:652

    Google Scholar 

  110. Bobeth W, Jacobasch HJ (1974) Melliand Textilber 55:268

    Google Scholar 

  111. v Hornuff G, Grimm H (1964) Faserforsch Textiltechnik 15:75

    Google Scholar 

  112. Bikerman J (1935) Kolloid Z 72:100

    Google Scholar 

  113. Madan GL, Shrivastava SK (1976) Colloid and Poylmer Sci 254:476

    Google Scholar 

  114. Goring D (Sept 1977) in: Fibre-Water Interactions in Paper Making, Transactions of the Symposium held at Oxford, Technical Division, The British Paper and Board Industry Federation, London

    Google Scholar 

  115. Jacobasch HJ, Meisel W, Mehner H, Flath HJ (1974) Faserforsch Textiltechnik/Z Polymerforsch 25:376

    Google Scholar 

  116. Kaden H (1975) Freiberger Forschungshefte C 296:97

    Google Scholar 

  117. Jacobasch HJ, Grosse I (1982) Acta Polymerica 33:294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. E. R. Schwarzl with congratulations for his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobasch, H.J., Bauböck, G. & Schurz, J. Problems and results of zeta-potential measurements on fibers. Colloid & Polymer Sci 263, 3–24 (1985). https://doi.org/10.1007/BF01411243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01411243

Key words

Navigation