Skip to main content
Log in

DSC experiments on gel-spun polyethylene fibers

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The tensile strength of gel-spun polyethylene fibers obtained after hot-drawing depends on spinning conditions such as spinning speed, spinning temperature, spinline stretching, polymer concentration, and molecular weight/molecular weight distribution. High deformation rates in the spinline result in shish-kebab structures which after hot-drawing lead to fibers with poor properties. This is in contrast to hot-drawn fibers obtained from gel-spun fibers with a lamellar structure. Lamellar or shish-kebab structures in the gel-spun fibers can be distinguished by means of DSC experiments on strained fibers. On the basis of these experiments a qualitative prediction of the final tensile properties can be made. DSC experiments on (un)strained hot-drawn fibers show that in the case of shish-kebab structures an incomplete transformation into a fibrillar structure takes place which partly explains the low tensile strength. Chain slippage which becomes possible after the orthorhombic-hexagonal phase transition is involved in the fracture mechanism. The shift of the orthorhombic-hexagonal phase transition to higher temperatures with increasing tensile strength indicates that the increase in strength corresponds to an increase in length of the crystal blocks. Consequently, creep failure also occurs at higher stresses. The melting behavior of cold-drawn and hot-drawn fibers is qualitatively similar, but the transformation into a fibrillar structure is more complete in the latter case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pennings AJ, Smook J, de Boer J, Gogolewski S, van Hutten PF (1984) In: Seferis JC, Theocaris PS (eds) Interrelations between processing, structures and polymer properties of polymeric materials. Elsevier Science Publishers BV, Amsterdam, p 285

    Google Scholar 

  2. Barham PJ, Keller A (1985) J Mater Sci 20:2281

    Article  Google Scholar 

  3. Lemstra PJ, Kirschbaum R (1985) Polymer 26:1372

    Article  Google Scholar 

  4. Smith P, Lemstra PJ, Kalb B, Pennings AJ (1979) Polym Bull 1:733

    Article  Google Scholar 

  5. Kalb B, Pennings AJ (1980) J Mater Sci 15:2584

    Article  Google Scholar 

  6. Savitskii AV, Gorshkova IA, Frolova IL, Smikk GN, Loffa IF (1984) Polym Bull 12:195

    Google Scholar 

  7. Roukema M, Tillema O, Pennings AJ, to be published

  8. Zwijnenburg A, Pennings AJ (1976) J Polym Sci (letters) 14:339

    Article  Google Scholar 

  9. Pennings AJ, Schouteten CJH, Kiel AM (1972) J Polym Sci: Part C 38:167

    Google Scholar 

  10. Capaccio G, Gibson AG, Ward IM (1979) In: Ciferri A, Ward IM (eds) Ultra high modulus polymers. Applied Science Publishers, London, p 1

    Google Scholar 

  11. Perkins WG, Capiati NJ, Porter RS (1976) Polym Eng and Sci 16:3

    Google Scholar 

  12. Capaccio G, Compton TA, Ward IM (1976) J Polym Sci, Polym Phys Ed 14:1641

    Google Scholar 

  13. Zwijnenburg A (1978) PhD Thesis, Groningen

  14. Zwijnenburg A, van Hutten PF, Pennings AJ, Chanzy HD (1978) Colloid Polym Sci 256:729

    Google Scholar 

  15. Smook J, Pennings AJ (1984) J Mater Sci 19:31

    Google Scholar 

  16. Pennings AJ, van der Hooft RJ, Postema AR, Hoogsteen W, ten Brinke G (1986) Polym Bull 16:167

    Article  Google Scholar 

  17. Hoogsteen W, ten Brinke G, Pennings AJ (1987) Polymer 28:923

    Google Scholar 

  18. Hoogsteen W, van der Hooft RJ, Postema AR, ten Brinke G, Pennings AJ, J Mater Sci, in press

  19. Hoogsteen W, Kormelink H, Eshuis G, ten Brinke G, Pennings AJ, J Mater Sci, in press

  20. Smook J, Savanije HB, Pennings AJ (1985) Polym Bull 13:209

    Google Scholar 

  21. Barham PJ (1982) Polymer 23:1112

    Google Scholar 

  22. Pennings AJ, Zwijnenburg A (1979) J Polym Sci, Polym Phys Ed 17:1011

    Google Scholar 

  23. Strobl G, Ewen B, Fischer EW, Piesczek W (1974) J Chem Phys 61:5257

    Google Scholar 

  24. Ewen B, Fischer EW, Piesczek W, Strobl G (1974) J Chem Phys 61:5265

    Google Scholar 

  25. Bonsor DH, Bloor D (1977) J Mater Sci 12:1552

    Google Scholar 

  26. Flory PJ, Hoeve CH, Cifferi A (1959) J Polym Sci 34:337

    Google Scholar 

  27. Flory PJ (1969) Statistical mechanics of chain molecules. Interscience, New York

    Google Scholar 

  28. Starkweather HW, Boyd RH (1960) J Phys Chem 64:410

    Google Scholar 

  29. Peterlin A, Meinel G (1965) J Appl Phys 36:3028

    Google Scholar 

  30. Peterlin A (1966) J Polym Sci, Part C 15:427

    Google Scholar 

  31. Smook J, Pennings AJ (1984) Colloid Polym Sci 262:712

    Google Scholar 

  32. Van Hutten PF, Koning CE, Pennings AJ (1985) J Mater Sci 20:1556

    Article  Google Scholar 

  33. Van Hutten PF, Koning CE, Smook J, Pennings AJ (1983) Polym Comm 24:237

    Google Scholar 

  34. Van Hutten PF, Koning CE, Pennings AJ (1984) Colloid Polym Sci 262:521

    Google Scholar 

  35. Van Hutten PF, Koning CE, Pennings AJ (1983) Macromol Chem, Rapid Comm 4:605

    Google Scholar 

  36. Smook J, Torfs JC, van Hutten PF, Pennings AJ (1980) Polym Bull 2:293

    Article  Google Scholar 

  37. Warner SB (1978) J Polym Sci, Polym Phys Ed 16:2139

    Google Scholar 

  38. Keller A, Willmouth FM (1972) J Macromol Sci, Phys B6(3):493

    Google Scholar 

  39. Smook J, Flinterman M, Pennings AJ (1980) Polym Bull 2:775

    Google Scholar 

  40. De Gennes PG (1984) Macromolecules 17:703

    Google Scholar 

  41. Hill MJ, Barham PJ, Keller A (1980) Colloid Polym Sci 258:1023

    Google Scholar 

  42. Smook J, Torfs JCM, Pennings AJ (1981) Macrom Chem 182:3351

    Google Scholar 

  43. Pennings AJ, van der Mark JMMA (1974) Rheol Acta 10:174

    Google Scholar 

  44. Torfs JC (1983) PhD Thesis, Groningen

  45. Dijkstra DJ, Pennings AJ, to be published

  46. Westrum EF, Mc Cullough JP (1963) In: Fox D, Labes MM, Weissberger A (eds) Physics and chemistry of the organic solid state. Interscience Publishers, London, chapter 1

    Google Scholar 

  47. Ungar G, Keller A (1980) Polymer 21:1273

    Google Scholar 

  48. Grubb DT, Keller A (1978) Colloid Polym Sci 256:218

    Google Scholar 

  49. Slutsker AI, Savitskii AV, Ismonkulov K, Sidorovich AA (1986) Polym Sci USSR 28:1091

    Google Scholar 

  50. Peterlin A (1987) Colloid Polym Sci 265:357

    Google Scholar 

  51. Popli R, Mandelkern L (1987) J Polym Sci, Polym Phys Ed 25:441

    Google Scholar 

  52. Matsuo M, Sawatari C, Iida M, Yoneda M (1985) Polym Journal 17:1197

    Google Scholar 

  53. Smith P, Lemstra PJ, Pijpers JPL, Kiel AM (1981) Colloid Polym Sci 259:1070

    Google Scholar 

  54. Postema AR, Hoogsteen W, Pennings AJ (1987) Polym Comm 28:148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoogsteen, W., ten Brinke, G. & Pennings, A.J. DSC experiments on gel-spun polyethylene fibers. Colloid & Polymer Sci 266, 1003–1013 (1988). https://doi.org/10.1007/BF01428809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01428809

Key words

Navigation