Skip to main content
Log in

Interaction-site representation of polar mixtures and electrolyte solutions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work we present an interaction-site theory for mixture electrolyte solutions. The theory is semi theoretically adjusted for dielectrical properties. The theory preserves the correct asymptotic limits of the dielectric constant when the solution approaches the limit of any of its pure component. In the intermediate concentration range it interpolates the dielectric constants according to a quadratic mixing rule in relative dipole densities. For the simplified interaction-site models applied here, the excess energies of water/methanol at 293.15 K and experimentally measured densities are in fair agreement with experimental values. The estimated average number of hydrogen bonds for a mole fraction of water equal to 0.75 also compares well with published simulations. Estimated energies with and without the dielectric correction indicate that the dielectric constant may have a significant impact on the energy for this molecule. Excess energies for mixtures of water and ethanol are estimated to be too low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Perkyns and B. M. Pettitt,J. Chem. Phys. 97:7656 (1992).

    Google Scholar 

  2. J. S. Haye and G. Stell,J. Chem. Phys. 65:19 (1976).

    Google Scholar 

  3. B. Kvamme,Fluid Phase Equil. 101:157 (1994).

    Google Scholar 

  4. M. J. Gillan,Mol. Phys. 38:1781 (1979).

    Google Scholar 

  5. D. A. Zichi and P. J. Rossky,J. Chem. Phys. 84:1713 (1986).

    Google Scholar 

  6. J. D. Talman,J. Comput. Phys. 29:35 (1978).

    Google Scholar 

  7. P. J. Rossky and H. L. Friedman,J. Chem. Phys. 72:5694 (1980).

    Google Scholar 

  8. J. G. Kirkwood and F. P. Buff.J. Chem. Phys. 19:774 (1951).

    Google Scholar 

  9. P. G. Kusalik and G. N. Patey,J. Chem. Phys. 86:511 (1987).

    Google Scholar 

  10. G. Palinkas, E. Hawlicka. and K. Heinzinger,J. Phys. Chem. 91:4334 (1987).

    Google Scholar 

  11. G. Palinkas and I. Bako,Z. Naturforsch. 46a:95 (1990).

    Google Scholar 

  12. J. S. Haye and G. Stell.J. Chem. Phys. 61:562 (1974).

    Google Scholar 

  13. D. Levesque, J. J. Weis, and G. N. Patey.J. Chem. Phys. 72:1887 (1980).

    Google Scholar 

  14. J. S. Hoye and G. Stell.J. Chem. Phys. 70:2893 (1980).

    Google Scholar 

  15. W. L. Jorgensen,J. Am. Chem. Soc. 103:335 (1981).

    Google Scholar 

  16. J. Chandrasekhar, D. C. Spellmeyer, and W. M. Jorgensen,J. Chem. Phys. 84:5836 (1984).

    Google Scholar 

  17. B. Kvanune and R. T. Holla, Structure and thermodynamics of small polar interactionsite molecules by canonical molecular dynamics and integral equation theory. presented at the 7th Nordic Symposium on Computer Simulation, Espoo. Finland, Sept. 3–5 (1993).

  18. R. C. Weast,Handbook of Chemistry and Physics, 68th ed. (CRC, Boca Raton, FL, 1987).

    Google Scholar 

  19. S. Westeneier,Chem. Techn. Leipzig 28:350 (1976).

    Google Scholar 

  20. G. Palinkas and I. Bako.Z. Naturforsch. 46a:95 (1991).

    Google Scholar 

  21. F. Hirata and P. J. Rossky.Chem. Phys. Lett. 83:339 (1981).

    Google Scholar 

  22. D. Chandler,Mol. Phys. 31:1313 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvamme, B. Interaction-site representation of polar mixtures and electrolyte solutions. Int J Thermophys 16, 743–750 (1995). https://doi.org/10.1007/BF01438859

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438859

Key words

Navigation